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Abstract. End-to-End training (E2E) is becoming more and more popu-
lar to train complex Deep Network architectures. An interesting question
is whether this trend will continue—are there any clear failure cases
for E2E training? We study this question in depth, for the specific case
of E2E training an ensemble of networks. Our strategy is to blend the
gradient smoothly in between two extremes: from independent training of
the networks, up to to full E2E training. We find clear failure cases, where
overparameterized models cannot be trained E2E. A surprising result
is that the optimum can sometimes lie in between the two, neither an
ensemble or an E2E system. The work also uncovers links to Dropout, and
raises questions around the nature of ensemble diversity and multi-branch
networks.

1 Introduction

Ensembles of neural networks are a common sight in the Deep Learning literature,
often at the top of Kaggle leaderboards, and a key ingredient of now classic
results, e.g. AlexNet (Krizhevsky et al.,[2012)). In recent literature, an equally
common sight is End-to-End (E2E) training of a deep learning architecture, using
a single loss to train all components simultaneously. An interesting scientific
question is whether the E2E paradigm has limits, examined in some detail by
|Glasmachers| (2017), who concluded that E2E can be inefficient, and “does not
make optimal use of the modular design of present neural networks”.

In line with this question, some have explored training an ensemble with
E2E, as if it was a modular, multi-branch architecture. Dutt et al.| (2020) explore
E2E ensemble training and demonstrate it allows one to “significantly reduce
the number of parameters” while maintaining accuracy. [Anastasopoulos and|

(2018) use the principle to improve accuracy in multi-source language
translation. Furlanello et al| (2018) show good performance across a variety

of standard benchmarks. This may seem promising, however,
conclude the opposite, that such End-to-End training of an ensemble is harmful
to generalization accuracy. The idea raises interesting scientific questions about
learning in ensemble/modular architectures. Some authors have noted that some
architectures (e.g. with multiple branches, or skip connections) may be viewed
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as an ensemble of jointly trained sub-networks, e.g. ResNets (Veit et al., 2016

|Zhao et all [2016). It is widely accepted that “diversity” of independently trained
ensembles is beneficial (Dietterich, 2000; [Kuncheva and Whitaker}, 2003)). and hard
evidence lies in the success of the many published variants of Random Forests
and Bagging . But if we train a set of networks End-to-End, they
share a loss function—so their parameters are strongly correlated—seemingly
the opposite of diversity. There is clearly a subtle relation here, raising hard
questions, e.g., what is the meaning of ‘diversity’ in E2E ensembles?

Our aim is to understand when each scheme—Independent ensemble training,
or End-to-End ensemble training—is appropriate, and to shed light on previously
reported results.
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Fig. 1. Computational graphs representing the training of a CNN ensemble: Independent
(Left) versus End-to-End training (Right). We study the dynamics of learning when
interpolating smoothly in-between these two extremes.

Our strategy is to interpolate the gradient smoothly between the two—a
convex combination of Independent and End-to-End training. This uncovers
complex dynamics, highlighting a tension between individual model capacity
and diversity, as well as generating interesting properties, including ensemble
robustness with respect to faults.

Organisation of the Paper:

In Section 2 we cover the necessary notation and probabilistic view we adopt
for the paper. In Section 3 we ask and expand upon the reasoning behind the
primary question of the paper: is it an ensemble of models, or one big model?.
This leads us to define a hybrid training scheme, which turns out to generalise
some previous work in ensemble diversity training schemes. In Sections 4 and 5
we thoroughly investigate the question, uncovering a rich source of unexpectedly
complex dynamics. Finally in Sections 6 and 7 we outline how this connects to a
wide range of work already published, and opens new doors for research.
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2 Background and Design Choices

We assume a standard supervised learning scenario, with training set S =
{(x4, )} drawn ii.d. from P(X)). For each observation x, we assume the
corresponding y is a class label drawn from a true distribution p(y|x). We
approximate this distribution with a model ¢(y|x), corresponding to some deep
network architecture. We will explore a variety of architectures: including simple
MLPs, medium/large scale CNNs, and finally DenseNets (Huang et al., [2018)).

To have an ensemble, there is a choice to make in how to combine the network
outputs. In our work we choose to average the network logits, and re-normalise
with softmax. This was used by [Hinton et al.| (2015), and [Dutt et al.| (2020)—we
replicate one of their experiments later. There are of course alternatives, e.g.
majority voting or averaging probability estimates. Majority voting rules out the
possibility of E2E ensemble training by gradient methods, since the vote operation
is inherently non-differentiable. Averaging probability estimates is common, but
we present a result below that encouraged us to consider the averaging logits
approach instead, beyond simply replicating Dutt et al.[ (2020).

We approach the classification problem from a probabilistic viewpoint: min-
imising the KL-divergence from a model g to the target distribution p. Given
a set of such probability models, we could ask, what is the optimal combiner
rule that preserves the contribution from each, in the sense of minimising KL
divergence? In a formal statement we refer to this as the ‘central’ model, denoted
q, that lies at the centre of the set of probability estimates:

g = argmin [;ﬁw la)] = argmin [@f JRTEI ;(é';)) dy|1)

It can easily be proved that the minimizer here is the normalized geometric mean,
corresponding to a Product of Experts model, though modeling only the means
(i.e. a PoE of Generalized Linear Models):

M
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This can be written in terms of the distribution’s canonical link f and its
inverse f~!. The inverse link for the Categorical distribution is the softmax
f~1(n), where n is a vector of logits. Correspondingly, the logits are given by
the link applied to class probabilities n = f(q(y|x)).
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i.e. a softmax operation on the averaged logits — this provides additional moti-
vation for the ensemble combination rule used by [Hinton et al.| (2015) and [Dutt
et al.| (2020]), since it is the rule that preserves the most information from the
individual models, in the sense of KL divergence.
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3 Is it an Ensemble, or one Big Model?

Ensemble methods are a well-established part of the ML landscape. A traditional
explanation for the success of ensembles is the ‘diversity’ of their predictions, and
particularly their errors. When we reach the limit of what a single model can do,
we create an ensemble of such models that exhibit ‘diverse’ errors, and combine
their outputs. This diversity can lead to the individual errors being averaged out,
and overall lower ensemble error obtained.

A common heuristic is to have the individual models intentionally lower
capacity than they might be, and compensate via diversity. Traditional ensemble
methods, such as Bagging and Random Forests, generate diversity via random-
ization heuristics such as feeding different bootstraps of training data to each
model (Brown et al., 2005a). Stacking (Wolpert), [1992) is similar in spirit to E2E
ensemble training, in that it trains the combiner function, although only after
individual models are fixed, using them as meta-features.

However, if the ensemble combining procedure was fully differentiable, we
could in theory train all networks End-to-End (E2E), as if they were branches
or components of one “big model”. In this case, what role is there for diversity?
Furthermore, with modern deep networks, it is easy to have extremely high
capacity models, but regularised to avoid overfitting. With this in mind, is
there much benefit to ensembling deep networks? Various empirical successes,
e.g. |[Krizhevsky et al.| (2012), suggest a tentative “yes”, but understanding the
overfitting behaviour of deep network architectures is one of the most complex
open challenges in the field today. It is now common to heavily over-parameterize
and regularize deep networks. These observations raise interesting questions on
the benefits of such architectures, and for ensemble diversity.

To study the question of failure cases for E2E ensembles, we could simply
train a system E2E and report outcomes. However, to get a more detailed pic-
ture, we define a hybrid loss function, interpolating between the likelihood for
an independent ensemble and the E2E ensemble likelihood. We refer to this as
the Joint Training loss, since it treats the networks jointly as components of a
single (larger) network, or as members of an ensemble. We stress that we are not
advocating this as a means to achieve SOTA results, but merely as a forensic
tool to understand the behaviour of the E2E paradigm.

Definition 1 (Joint Training Loss):

M
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where D is the KL-divergence as defined before. The loss is a convex combination
of two extremes: A = 1, where we train ¢ as one system, and A\ = 0, where we
train the ensemble independently (with a learning rate scaled by 1/M). When A
lies between the two, it could be seen as ¢ being ‘regularized’ by the individual
networks partially fitting the data themselves. Alternatively, we can view the
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same architecture as an ensemble, but trained interactively. This is made clear
by rearranging Equation as:

M M
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A simple proof is available in supplementary material. This alternative view
shows that A controls a balance between the average of the individual losses, and
a term measuring the diversity between the ensemble members.

From this perspective, this is a diversity-forcing training scheme similar to
previous work [Liu and Yao| (1999)). In fact for the special case of a Gaussian p, g,
Eq is exactly that presented by [Liu and Yao| (1999). However, the probabilistic
view allows us to generalise, and for the case of classification problems, this can
be seen as managing the diversity in a classification ensemble. However, seen as
a ‘hybrid’ loss, (4], explicitly varies the gradient in-between the two extremes of
an ensemble and a single multi-branch architecture, thus including architectures
studied previously (Lee et al., |2015; [Dutt et al., [2020) as special cases. In the
following section we use this to study the learning dynamics in terms of tensions
between model capacity and diversity.

4 Experiments

End-to-End training of ensembles raises several interesting questions: How does
End-to-End training behave when varying the capacity/size of networks? Should
we have a large number of simple networks? Or the opposite—a small number
of complex networks? What effect does varying A have in this setting, smoothly
varying from Independent to End-to-End training? Suppose we have a high
capacity, well-tuned single network, performing close to SOTA. In this situa-
tion, presumably, independent training of an ensemble of such models will still
marginally improve over a single small model, due to variance reduction. However,
it is much less clear in this case whether there will be further gains as A — 1, to-
ward End-to-End training. We investigate this first with simple MLPs, exploring
trade-offs while the number of learnt parameters is held constant, and then with
higher capacity CNNs, including DenseNets (Huang et al., 2017).

Spending a Fized Parameter Budget. We first compare a single large network to
an ensemble of very small networks: each with the same number of parameters.
The study of such architectures may have implications for IoT/Edge compute
scenarios, with memory /power constraints. We set a budget of memory or number
of parameters, and ask how best to “spend” them in different architectures. This
type of trade-off is well recognised as highly relevant in the current energy-
conscious research climate, e.g. very recently |Zhu et al.| (2019). We stress again
however that we are not chasing state of the art performance, and instead observe
the dynamics of Independent vs E2E training in a controlled manner.
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We use single layer MLPs in four configurations with ~815K parameters: a
single network with 1024 nodes (1 x 1024H), 16 networks each with 64 nodes
(16 x 64H), 64 networks with 16 nodes (64 x 16H), and 256 networks with
4 nodes (256 x 4H). We evaluate these on the 10-class classification problem,
Fashion-MNIST. Full experimental details are in the supplementary material.

Figure [2| summarizes results for the 1x1024H network versus the 256 x4H
ensemble. Again, these have the same number of configurable parameters, just
deployed in a different manner. The ‘monolithic’ 1024 node network (horizontal
dashed line, 10.2% error) significantly outperforms the ensemble trained inde-
pendently (16.3%), as well as the ‘classic’ methods of Bagging and Stacking.
However, End-to-End training of the small network ensemble almost matches
performance, and Joint Training (A = 0.95) gets closer with 10.3% error.

16.0 16.3 16.3 —==- Monolithic (1x1024H)

Test error rate (%)
-
w

Bagging Stacking Independent  End-to-End  Joint training
training training (A=0.95)

Fig. 2. Large single network vs. small net ensemble. Joint Training the ensemble
(A =0.95) comes closest to match the large network accuracy, while classic ensemble
methods significantly underperform.

Figure [3|shows detailed results, varying A on other configurations. The distinction
between End-to-End training and independent training is most pronounced for
the large ensemble of small networks, 256 x 4H, where E2F training is sub-optimal.

However, as the capacity of the networks increases, the difference between
End-to-End and independent training vanishes — illustrated by the almost
uniform response to varying A with larger networks. This is investigated further
in the next section with state-of-the-art DenseNet networks (Huang et al.| [2017)
with millions of parameters.

High Capacity Individual Models. In deep learning, a recent effective strategy is
to massively overparameterize a model and then rely on the implicit regularizing
properties of stochastic gradient descent. We ask, is there anything to be gained
from End-to-End training of such large models? What does the concept of
diversity even mean when the models have almost zero training error? We address
this by examining ensembles of DenseNets (Huang et al.| [2017]), which achieve
close to SOTA at the time of writing. We train a variety of DenseNet ensembles
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Fig. 3. Error rates for MLPs with 815K parameters, on Fashion-MNIST. Joint Training
with higher A\ values improves the performance of small network ensembles, matching
the performance of a single large network.

on the CIFAR-100 dataset, with the size of the ensemble increasing as the
complexity of each ensemble member decreases, such that each configuration
occupies approximately 12GB of GPU RAM. These configurations are described
in Table[I} Full experimental details can be found in the supplementary material.

Table 1. DenseNet ensembles. A proxy measure of capacity is (d, k), the depth d
and growth rate k, which we decrease as the size M of the ensemble increases. Each
architecture occupies approximately 12GB RAM.

Name Depth k& M Memory Params.

DN-High 100 12 4 ~12GB 3.2M
DN-Mid 82 8 8 ~12GB 2.1M
DN-Low 64 6 16 ~12GB 1.7M

Table |2 shows results for independent, End-to-End, and Joint training, vs.
Bagging/Stacking. Each row contains results for a DenseNet ensemble, with
minimum error rate in bold. Results for DN-High replicate the results of [Dutt
et al.| (2020, Table 2).

In the previous section, we saw End-to-End training outperforming indepen-
dent training for large ensembles of very small models. Here, we find the opposite
is true for small ensembles of large, SOTA models. In every DenseNet configura-
tion, End-to-End training (i.e. A = 1) is sub-optimal. In all but DN-Low, which
is the configuration with the largest ensemble of smallest models, independent
training (A = 0) achieves the lowest test error. These results indicate there
is little to no benefit in test error when E2E ensemble training SOTA
deep neural networks. However, the result for DN-Low suggests that there
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Table 2. Error rates (%) for DenseNet ensembles. Independent training is optimal
(bold) for all but the smallest capacity networks.

DN-Low DN-Mid DN-High
A = 0.0 (independent)y  25.0 19.9 17.8

A=05 23.5 20.0 18.8
A=09 25.9 22.4 20.3
A = 1.0 (BEnd-to-End)  29.6 25.7 22.1
Bagging 32.5 29.5 28.4
Stacking 28.3 23.4 21.4

may be a relatively smooth transition, somewhere between E2E ensembles and
independent training, as the complexity of the ensemble members increases.

Intermediate capacity. In this section we further explore the relationship between
ensemble member complexity and E2E ensemble training. We train ensembles
of convolutional networks on CIFAR-100. Each ensemble has 16 members of
varying complexity, from 70,000 parameters up to 1.2 million. Full details can
be found in the supplementary material. Note that these experiments are not
intended to be competitive with the SOTA, but to illustrate relative benefits of
E2E ensembles as the complexity of individual members varies.

Figure [4] shows the test error rate and standard errors for each A value for
each configuration. The ‘dip’ in each of the four lines in the figure is the optimal
A. We find that the optimal point smoothly decreases: E2E ensembles are the
preferred option with simpler networks, but this changes as the networks become
more complex. At 1.2M parameters, the optimal point lies clearly between the
two extremes. This supports the trend observed in the previous sections, that
the benefits of E2E training as a scheme depend critically on the complexity of
individual networks.

When does End-to-End ensemble training fail? These results suggest a trend:
ensembles of low capacity models benefit from E2E training, and high capacity
models perform better if trained independently. We suggest a possible explanation
for this trend, and a diagnostic for determining during training whether E2E
training will perform well. We find that ensembles of high capacity models, when
trained E2E, exhibit a ‘model dominance’ effect, shown in Figure [6] There is
a sharp transition in behaviour at A = 1 (E2E), whereby a single ensemble
member individually performs well—in both training and test error—while all
other members perform poorly. This effect is not observed in ensembles of low
capacity models.

We suggest that this dominance effect can explain the poor performance of
E2E training seen in Table |2l We also note that model dominance occurs in the
E2E training experiments of [Dutt et al.| (2020, Table 2) (called ‘coupled training
(FC)’ by the authors); the authors report the average and standard deviation
(within a single trial) of the ensemble member error rates. In the case with 2
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Fig. 4. Ensemble test error against A for ensembles of convolutional networks of varying
complexity on CIFAR-100. The optimal X value shifts away from E2E ensemble training
with greater individual network capacity.

ensemble members, it can be inferred that one ensemble member achieves a much
lower error rate than the other.

In our own experiments, the dominance effect manifests early in training
(Figure @ In each trial, the ensemble member with the lowest error rate by the
end of epoch 3 dominates by the end of training; model dominance can be used
as an early diagnosis during training that the ensemble members are overcapacity
for E2E training. Note that model dominance can occur in classification because
the ensemble prediction is a normalized geometric mean; a network closely fitting
the data can arbitrarily reduce the ensemble error—the well-known ‘veto’ effect
in Products of Experts —and the parameters of other networks
can be prevented from moving far from their initial values. This ‘stagnation’ of
other ensemble members can be seen in Figure [5, which shows some of the filters
in the first layer of a ConvNet trained independently and E2E, showing a small
number of strong filters in the latter case.

Output channel

0123456
les Modules

Fig. 5. Model dominance in filters in the first layer of 10 CNN modules. Trained
independently (left) and E2E (right). In E2E training, only network 4 has strong filters.
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Fig. 6. Ensemble vs Member error: Over-capacity models (DenseNets, top sub-figure)
experience a ‘model dominance’ effect when trained E2E, whereas there is no such effect
with 256 x 4H undercapacity models (bottom sub-figure).
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5 What happens between E2E and independent training?

The previous section has demonstrated clearly that E2E training of an ensemble
can be sub-optimal. More interestingly perhaps, the complex behaviour seems to
lie between independent and E2E. This section goes beyond just ensemble test
error rate, and looks into properties of the networks inside the ensemble.

Robustness. We find that Joint Training with A very slightly less than 1 can
greatly increase the robustness of an ensemble, in the sense that dropping the
response from a subset of the networks at test time does not significantly harm
the accuracy. This partial evaluation, performing inference for only a subset of
the networks, may be useful in resource-limited scenarios, e.g. limited power
budgets in Edge/IoT devices.
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Fig. 7. Independent training (A = 0) gives robust ensembles; however, many members
are redundant. End-to-End training (A = 1) gives brittle ensembles. Joint Training with
A = 1 (but strictly less than 1) retains the accuracy whilst adding robustness.

Figure [7] analyses the 256 x 4H ensemble, dropping a random subset of
networks for each test example in Fashion-MNIST, averaged over 20 repeats.
Independent training (A = 0) builds a highly robust ensemble, but which could
also be seen to be redundant—adding more networks does not increase accuracy.
End-to-End training (A = 1) achieves higher test accuracy, but the ensemble is
not at all robust. Joint Training with A = 0.99 achieves the same accuracy as
End-to-End with all members, but can maintain accuracy even if more than 50%
of the networks are dropped. A similar behaviour is observed with the 64 x 16H
architecture, in Figure

Robust ensembles: why does this occur? When training independently,
the networks have no “idea” of each others’ existence—so solve the problem as
individuals—and hence the ensemble is highly robust to removal of networks.
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Fig. 8. Robustness with the 64 x 16H architecture. The same robustness appears, but
relative benefit is less, as the independently trained ensemble can perform better.

When we End-to-End train the exact same architecture, all networks are effectively
"slave” components in a larger network. They cannot directly target their own
losses, so individual errors would not be expected to be very low. However, as
a system, they work together, and achieve low ensemble error. The problem is
that the networks rely on the others too much—so when removing networks, the
performance degrades rapidly. This is illustrated in Figure [0} —we see individual
network loss rapidly increasing as we approach End-to-End training (i.e. A = 1).

5 ]
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Fig. 9. 64 x 16H: ensemble vs. average loss. The average grows sharply as A — 1, a
symptom of the individuals relying on others to correct mistakes.

The “sweet spot” is a small amount of joint training with A = 0.99, which
ensure the networks cannot rely on each other completely, but are still working
together. This is highly reminiscent of Dropout, where one of Hinton’s stated
motivations was to make each “hidden unit more robust and drive it towards
creating useful features on its own without relying on other hidden units to
correct its mistakes.” (Srivastava et al., 2014} Section 2). This similarity is not a
coincidence, and is discussed in the next section.
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6 Discussion & Future Work

The primary question for this paper was “when does E2E ensemble training fail?”,
with the intention to explain conflicting results in the literature, e.g. [Lee et al.
(2015); [Dutt et al.| (2020)). The answer turns out to be intimately tied with the
over-parameterization (or not) of individual networks in the ensemble. [Dutt et al.
(2020)); [Lee et al.|(2015) concluded that End-to-End training of ensembles leads to
poor performance—however, only very large state-of-the-art models were studied.
Our results agree with theirs exactly, in situations where ensemble members are
over capacity—Table [2 reproduces the results of Dutt et al.| (2020, Table 2)—but,
the advantage of E2E emerges with lower capacity individuals, where there are
also interesting and potentially useful dynamics in-between Independent/E2E
training.

Relations to prior work. The investigation turned up links to literature
going back over 20 years, in terms of ensemble diversity (Heskes| [1998]). As
mentioned, we presented results primarily on classification problems—however,
the framework presented in Section 2 applies generally for targets following any
exponential family distribution. For the special case of a Gaussian, and when
we re-arrange the loss as , the gradient is ezxactly equivalent to a previously
proposed method, Negative Correlation Learning (NCL) (Liu and Yao, |1999;
Brown et al., 2005b)). Thus, an alternative view of the loss is as a generalization
of NCL to arbitrary exponential family distributions, where the Categorical
distribution assumption here can be seen as managing diversity in classification
ensembles, echoing the title of Brown et al.| (2005b)).

The Dropout connection? We observed a qualitative similarity between
ensemble robustness, and the motivations behind Dropout (Srivastava et al.
2014). It is interesting to note that Negative Correlation Learning Liu and Yao
(1999) can be proven equivalent to a stochastic dropping of ensemble members
during training (Reeve et al., 2018), i.e. Dropout at the network level. With
some investigation we have determined that their result depends critically on
the Gaussian assumption and hence holds only for NCL, not more generally for
Joint Training loss with any exponential family. Despite this, the observations in
Section [5| do suggest a connection, worthy of future work.

Should we always E2E train Multi-Branch networks? The End-to-
End training methodology treats the ensemble as if it were a single multi-branch
architecture. A similar view could be taken of any multi-branch architecture, e.g.
ResNeXt (Xie et al., [2017)) that it is either an ensemble of branches, or a single
system. We have found that if ensemble members are over capacity, then one
network can ‘dominate’ an ensemble, leading to poor performance overall. This
raises the obvious open question, of whether it is also true for sub-branches in
general branched architectures like ResNeXt.

Ill-conditioning? As A — 1, the condition number of the Hessian for the JT
Loss tends to infinity, as we show in the supplementary material. Therefore there
may be cases where E2E training with first-order optimization methods (e.g.
simple SGD) performs poorly, and where second-order methods behave markedly
differently. We leave this question for future study.
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7 Conclusions

We have presented a detailed analysis of the question “When does End-to-End
Ensemble training fail?”. This is in response to the recent trend of end-to-end
training being used more and more in deep learning, and specifically for an
ensemble (Lee et al., |2015; [Furlanello et al., 2018} [Dutt et al.,[2020). Our strategy
for this was to study a convex combination of the likelihood-based losses for
independent and E2E training, blending the gradient slowly from one to the
other.

Our answer to the question is that End-to-End training tends to under-
perform when member networks are significantly over-parameterized, though it is
possible to diagnose whether this will happen by examining the relative network
training errors in the first few epochs. In this case we suggest alternative classical
methods such as Bagging, or Independent training. Further, we conjecture that
this may have implications for general multi-branch architectures—should we
always train them E2E, or perhaps individually?

The space between independent and E2E turned out to be a rich source of
quite unexpectedly complex dynamics, generating robust ensembles, with links
to Dropout, general multi-branch deep learning, and early literature on ensemble
diversity. We suggest the book is not yet closed and perhaps there is much more
to learn in this space.
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A Re-writing the Joint Training Loss

Here we show that the convex combination form and the ‘ambiguity’ form of the
loss are equivalent. Starting from the convex combination form:

def
Ly =)

AD(p [ §) + ZD (plla) (6)
we use the ambiguity decomposition (Heskes| |1998]):

M M

D(p[lq) = Z (pllg;) — Z (@l g)- (7)

Substituting the right-hand side for the D(p||¢) term in (6], we obtain the
ambiguity form of the loss:

M M
In=1: > Dlla) - 1> Dlalla). ¥
j=1 j=1

B Experimental Details

Here we specify details such as dataset, model architecture, and training for the
modular loss experiments.

B.1 Spending a Fixed Parameter Budget—MLPs / Fashion-MNIST

Dataset. We use the Fashion-MNIST dataset (Xiao et al., 2017) with the prede-
fined train/test split, holding out 10,000 training examples as a validation set for
early stopping. We apply mean and standard deviation normalization, and no
data augmentation.

Architectures. We use single layer MLPs with ReLU activations, in four configu-
rations each with ~815K parameters: a single module with 1024 hidden nodes
(1-M-1024-H), 16 modules with 64 hidden nodes each (16-M-64-H), 64 modules
with 16 nodes (64-M-16-H), and 256 modules with 4 nodes (256-M-4-H).

Training. We train for 200 epochs of SGD, batch size 100, momentum 0.9, and
tune the learning rate independently for each configuration and \. Final reported
test error is that at the epoch where validation error was minimized. Results are
averaged over 5 trials of random train/validation splits and initializations.

B.2 High Capacity Individual Models—DenseNets / CIFAR-100

Dataset. We use the CIFAR-100 (Krizhevsky, 2009) dataset with the predefined
train/test split, per-channel mean and standard deviation normalization, and the
standard data augmentation (see, e.g., He et al.| (2016)).
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Architectures. We train ensembles of DenseNet-BC networks (Huang et al. |2017)).
We train 4 modules with a depth of 100 and growth rate 12 (DN-100-12-4)—a
configuration used in [Dutt et al|(2020). We also train ensembles of 8 and 16
smaller DenseNet modules. Our DenseNet implementation is based on |Amos and
Kolter| (2017)).

Table 3. DenseNet architectures.

Name Depth k& Modules Parameters

DN-High 100 12 4 3.2M
DN-Mid 82 8 8 2.1M
DN-Low 64 6 16 1.7M

Training. We evaluate A values {0.0, 0.5, 0.9, 1.0} over 3 trials of parameter
initialization. We use the training procedure described by Huang et al.| (2017]);
Dutt et al.| (2020). We use SGD with batch size 64. The initial learning rate of
0.1 is decreased by a factor of 10 at epochs 150 and 225, with momentum 0.9.

B.3 Intermediate Capacity—Small ConvNets / CIFAR-100

Dataset. We use the CIFAR-100 dataset (Krizhevsky, [2009) with the predefined
train/test split, holding out 10,000 training examples for early stopping. We
apply per-channel mean and standard deviation normalization, and apply the
standard flip and crop data augmentation used for this dataset.

Architecture. We train ensembles of 16 CNNs with ReLLU activations. We ap-
ply global pooling before the final fully connected layer, in the style of Mo-
bileNets (Howard et al.l [2017)). The networks are fully convolutional, and we

evaluate a variety of architectures of varying complexity. The architectures are
described in Table @

Table 4. ConvNet architectures. Each architecture is fully convolutional. Each convolu-
tion layer has a 3 x 3 kernel with no dilation. The ‘Filters’ column indicates the number
of output features of each layer. Bold indicates a stride of 2 for a layer, otherwise a
stride of 1 is used.

Parameters Layers Filters
0.07M 3 32,64,64
0.14M 32,64,64,128

4
0.29M 5 32,64,64,128,128
0.60M 6 32,64,64,128,128,256
1.20M 7 32,64,64,128,128,256,256
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Training. We evaluate A values {0.0, 0.1, 0.2, ..., 1.0} over 5 trials of random
training/validation splits and parameter initializations. We use SGD with batch
size 128, with learning rate 0.1, momentum 0.9, and weight decay 10~4. We train
for 400 epochs, decaying learning rate by a factor of 10 at epochs 200 and 300,
before reporting test error at the epoch at which validation error is minimized.

C Effect of X on the Condition Number of the Hessian

In this section we show that for A > 0, any stationary points—in the special
case of scalar model outputs—has a Hessian with both positive and negative
eigenvalues, and so all stationary points are saddle points. Further, we show that
the condition number of the Hessian grows as A tends to 1 from below.

For a given input pattern, let the target y be distributed according to a
single-parameter exponential family distribution with scalar parameter 7. Let
7; be the parameter value prediction for the jth model of a collection of M
models, and let 77 = 57 Z;\il 7; be the ensemble prediction. Let g; = g(7;) and
g = g(7}) be the conditional mean estimates of the jth model and ensemble model
respectively, where ¢ is the canonical inverse link function of the distribution.
We have

0Ly 1
— =—((1=-Ngy, + Ay — >7 9
where Ly is the modular loss, and the entries of the Hessian are given by

8L _{&(14(1_;4)).9/(,71,) 5= j

— = 10
0n;0n; (10)

= -9’ (1) otherwise

From @, for A # 0 any stationary point of the loss must have g; = 9; =y =y,

and therefore ¢ < g (M) = g'(n;) = ¢'(7) = ¢'(n) for all 4,7, and the Hessian
takes the form

qrr...mT
rqr...T
H=|""q...T , (11)
rrr...q
with diagonal entries
1 1
=—(1-Al1-—— 12
o (1 (1)) ®
and off-diagonal entries
A
r=—s-c (13)
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This matrix is H = r - Jyy + (¢ — r) - I, where Jys is the M x M matrix of
ones and I; is the M x M identity matrix. The eigenvalues of Jy; are M with
multiplicity 1 and 0 with multiplicity M — 1. Therefore, the eigenvalues of H are

c
w=q¢+(M-1)-r=

M

wgzq—r:M-(l— ). (15)

From this, we can see that for A > 1 the Hessian at the stationary point has both

positive and negative eigenvalues, and therefore the stationary point is a saddle

point, therefore the models will diverge. Moreover, for 1 > A > 0, the condition
number is

(14)

c

>

w1 1
K(H) = 2= (16)
which tends to infinity as A tends to 1 from below. This may suggest that opti-
mization may be problematic for A close to 1, and that we might see significantly
different learning behaviour between first- and second-order methods in this
regime.
Note that in the case of the Bernoulli distribution, the loss surface with
respect to the parameter estimates 7; has no stationary points, but a similar
argument can be made with limits.

D Equivalence of ‘Coupled Ensembles’ Training Methods

We prove here that the ‘LL’ and ‘SM’ coupled training methods of [Dutt et al.
(2020) for ensembles of classifiers are actually equivalent to independent training,
up to a scaling of learning rate. We demonstrate that here.

Suppose we have a collection of M neural networks for a K class classification
problem. Let q,(cm) denote the kth post-softmax output of the mth neural network
for a given example. Let y be the one hot-encoded true label. The cross entropy
loss L™ of the mth network is

Lm = _ Zyk log q,gm) . (17)
k

The ‘LL’ coupled training method of Dutt et al.| (2020) has as its loss function
L1, the arithmetic mean of the cross entropy loss functions for each network.
Le.,

1
L = §m Lm (18)

It follows from the fact that 8L(m)/8q,(§") = 0 if m # n—i.e., that the cross
entropy loss of one network does not depend on the output of another—that

OLpy 1 9L™ (19)
9q" M og™




To Ensemble or Not Ensemble: When does End-To-End Training Fail? 21

In words, the gradient of the ‘LL’ loss with respect to a given network output—
and therefore the gradient with respect to the network parameters—is the same
as when training independently, scaled by a factor 1/M.

The ‘SM’ coupled training method of Dutt et al.| (2020) works as follows. First,
take the log of the probabilities q,(cm), and then take the arithmetic mean across
networks. The key point here is that the result is not a vector of log probabilities;
it is un-normalized. An inspection of the authors’ provided code (Dutt et al.,
2018)) shows that, in the ‘SM’ method, this un-normalized log probability vector
is given as input to the NLLLoss loss function provided by PyTorch, which
expects log probabilities. The result is that the cross entropy loss is applied to
the un-normalized probabilities

~ 1 m
G = exp (M %:log g )> : (20)

and that, if y is the one hot-encoded true label, the loss function that is effectively
used is

Lsy ==y log s (21)
k
== Y loggl™ (22)
k M m ’
1
_ (m) _
_Mzm:L =Lr. . (23)

This suffices to demonstrate that the ‘LL’ and ‘SM’ methods are equivalent
to independent training up to a scaling of learning rate.
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