Diffusion-Inspired Enhanced Sampling

Wenlin Chen University of Cambridge & Max Planck Institute for Intelligent Systems

https://wenlin-chen.github.io/ chen.wenlin@outlook.com

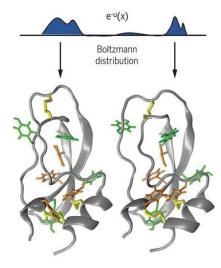
Sampling

Sampling from unnormalized distributions

$$p(x) = \frac{\tilde{p}(x)}{Z}$$

Boltzmann distribution with unnormalized density

$$\tilde{p}(x) = \exp(-E(x)/kT)$$



- $\tilde{p}(x)$ easy to evaluate but hard to sample from
- Score function (force) can be evaluated: $\nabla_x \log p(x) = -\nabla_x E(x)$

Noé, Frank, et al. "Boltzmann generators: Sampling equilibrium states of many-body systems with deep learning." Science 365.6457 (2019): eaaw1147.

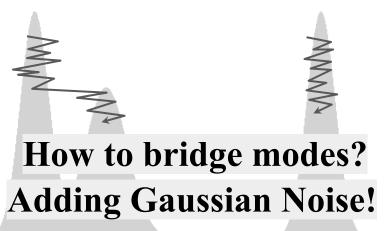
Markov Chain Monte Carlo

Sampling from unnormalized distributions

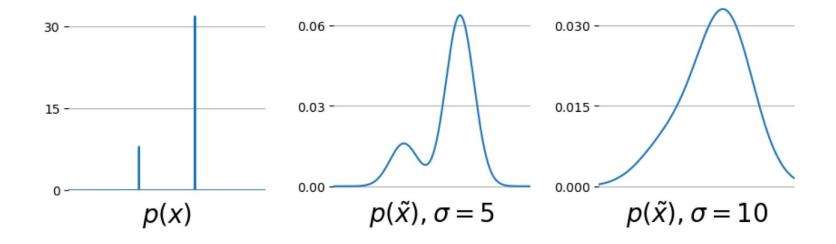
$$p(x) = \frac{\tilde{p}(x)}{Z}$$

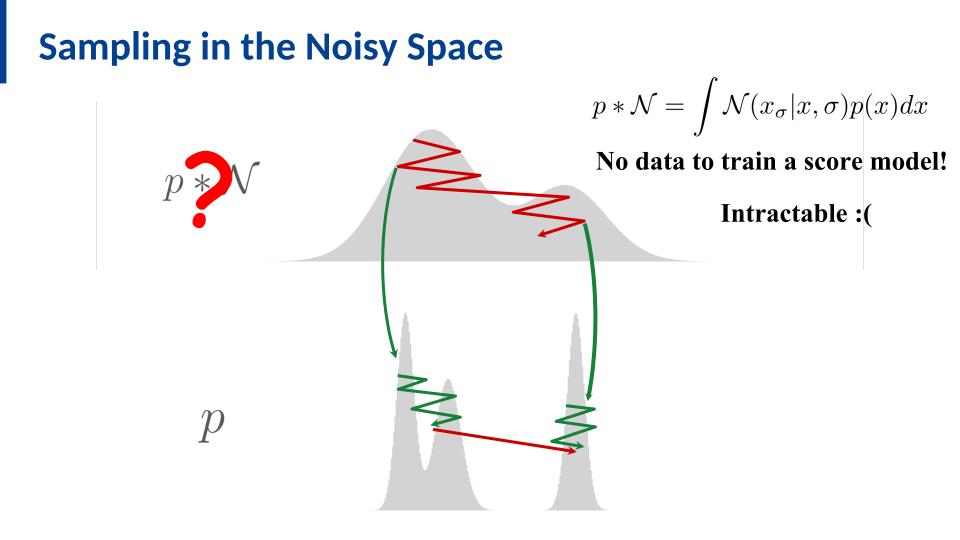
"Standard" solution: Markov chain Monte Carlo (MCMC)

Challenges:



Diffusion Connects Modes





Diffusion-Inspired Samplers

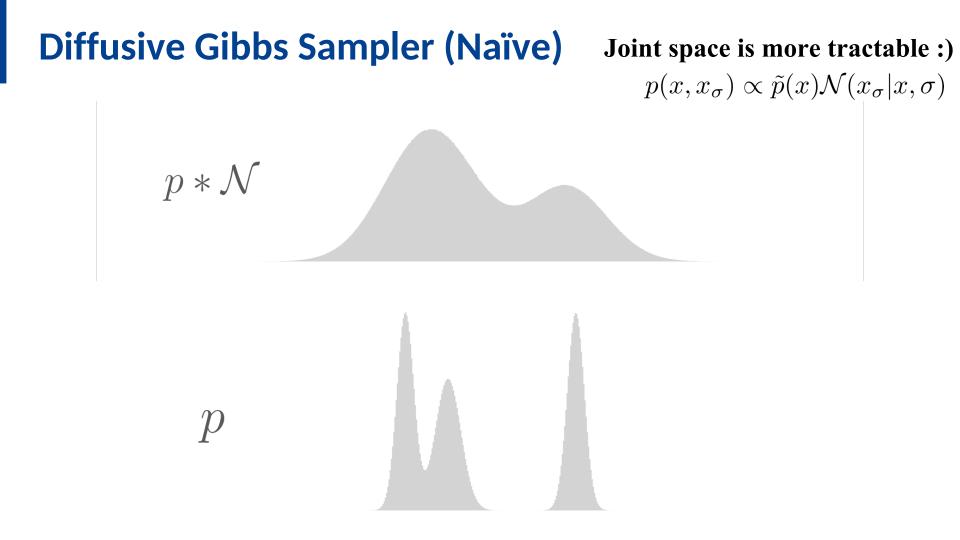
We propose two solutions:

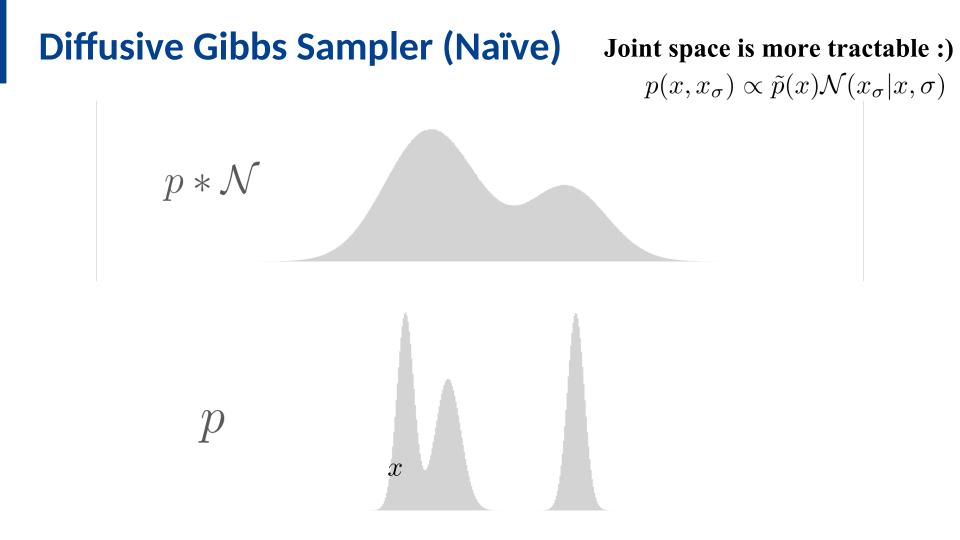
 $p * \mathcal{N} = \int \mathcal{N}(x_{\sigma} | x, \sigma) p(x) dx$

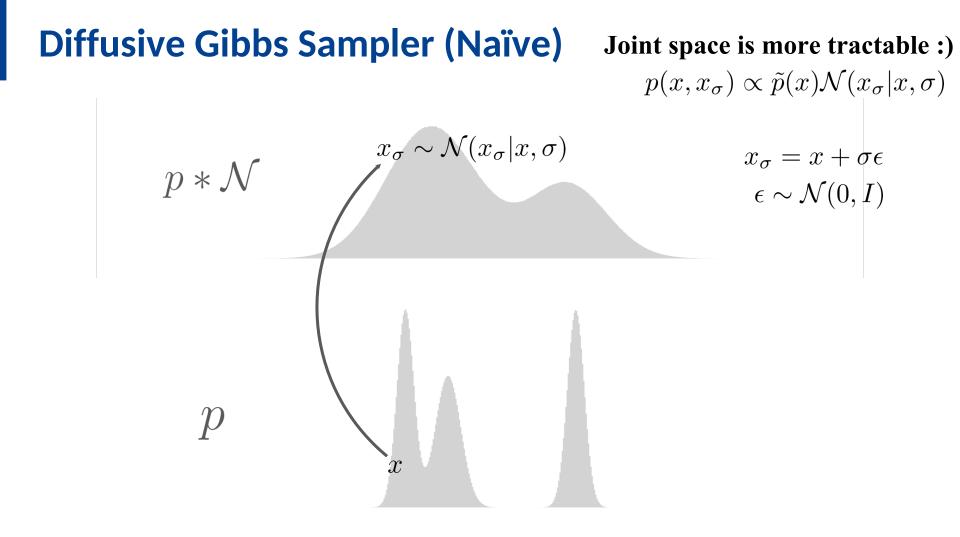
No data to train score model!

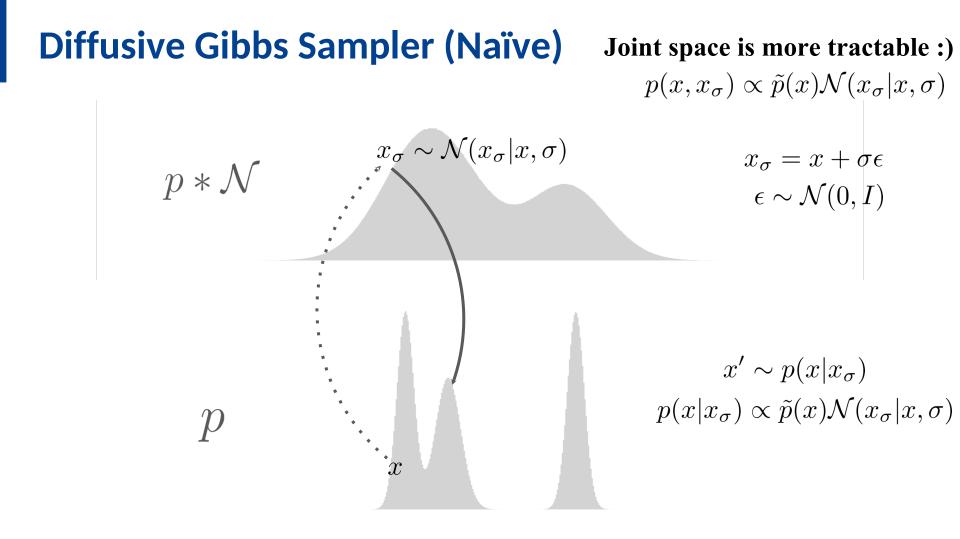
- Diffusive Gibbs Sampler (model-free MCMC sampler)

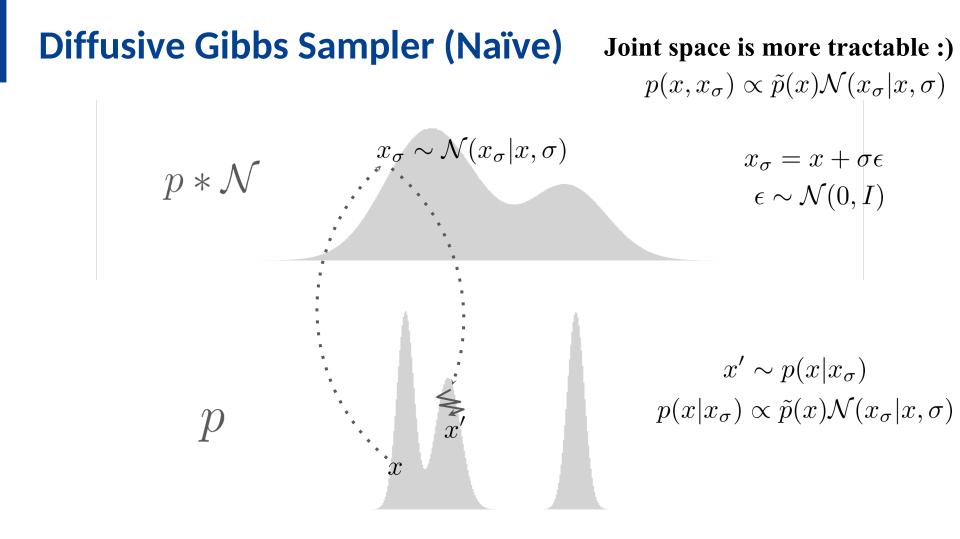
- Diffusive Neural Sampler (model-based neural sampler)

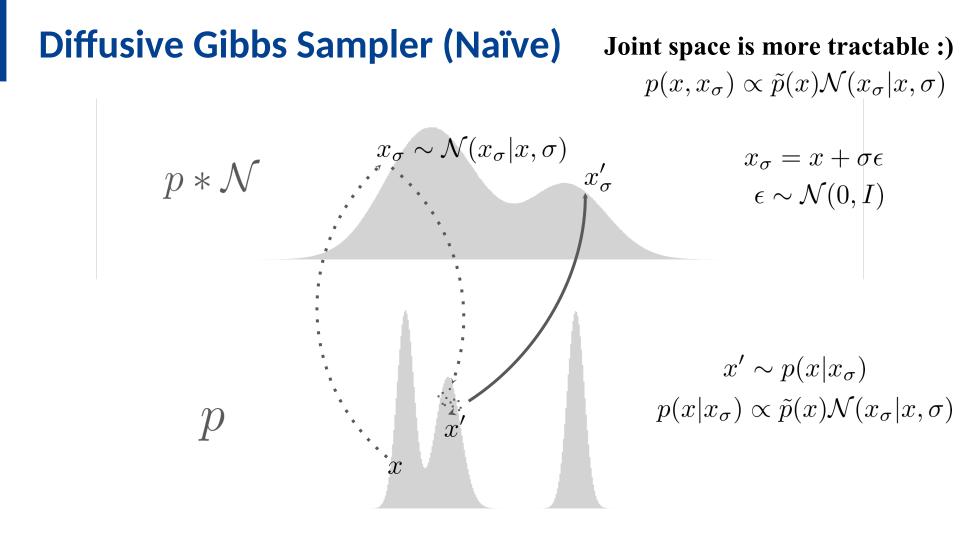


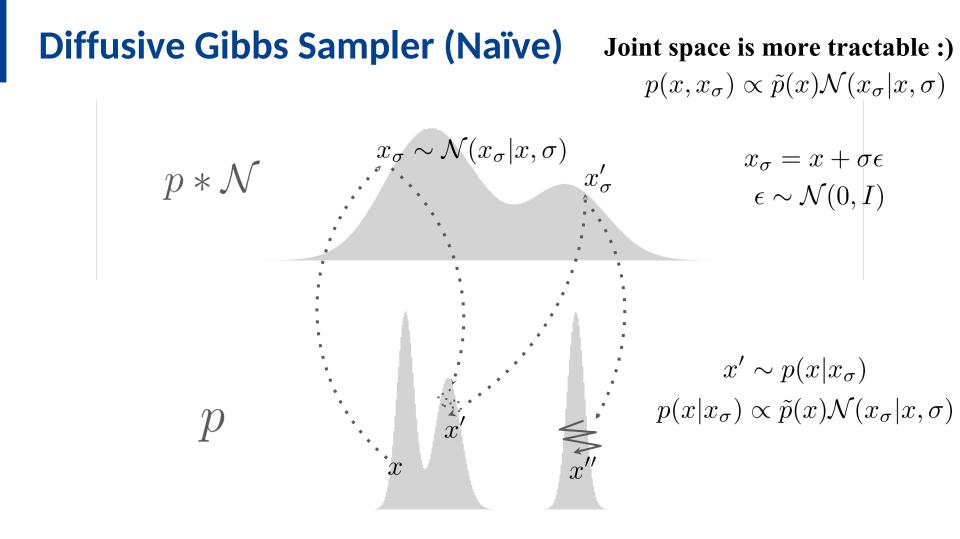




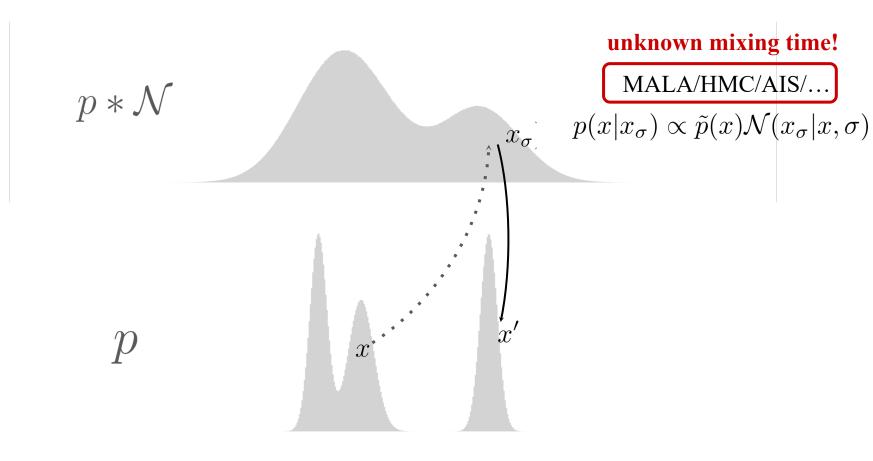




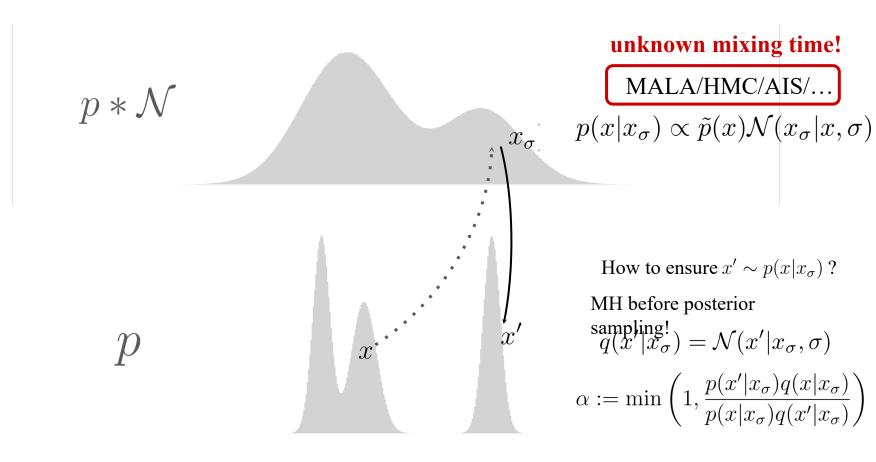


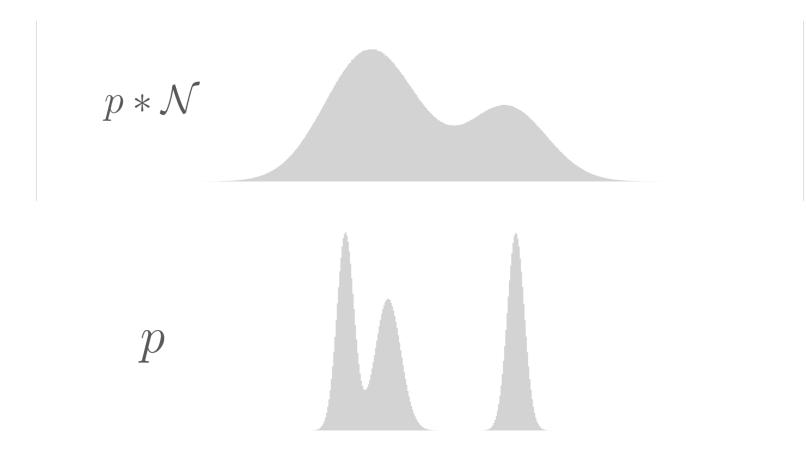


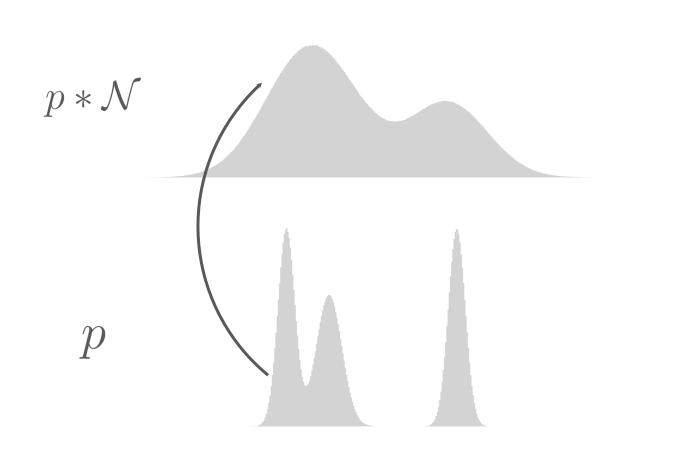
A Caveat in Denoising Posterior Sampling

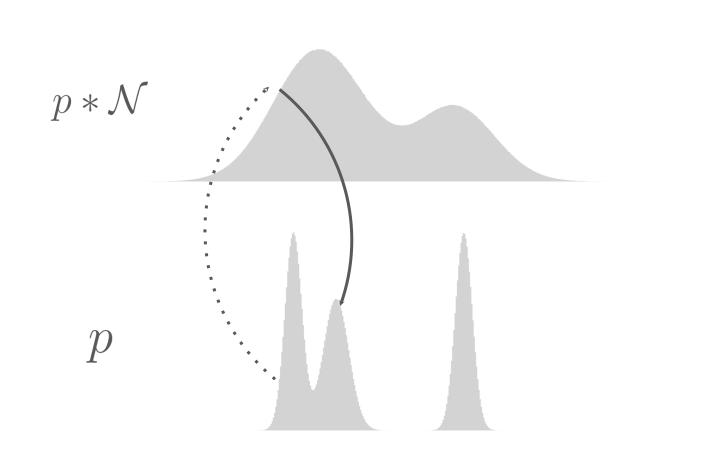


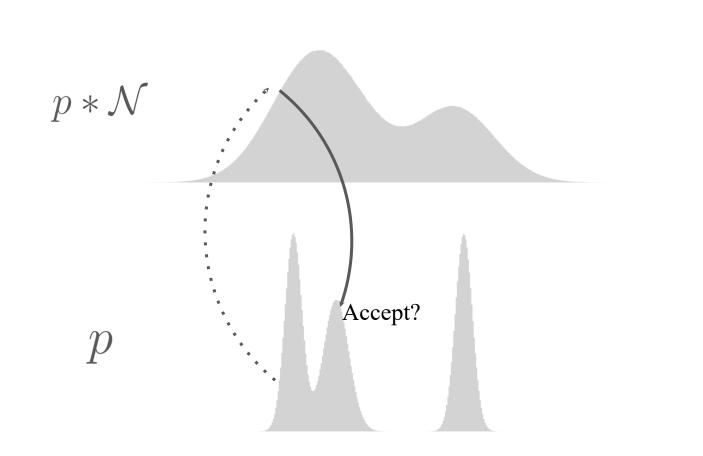
Metropolis-within-Gibbs

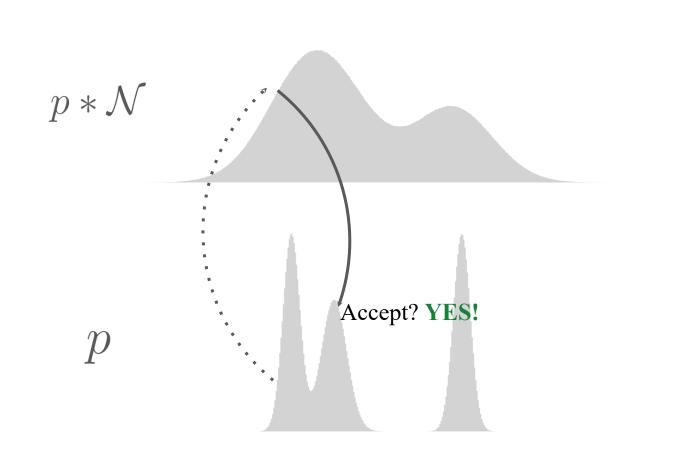


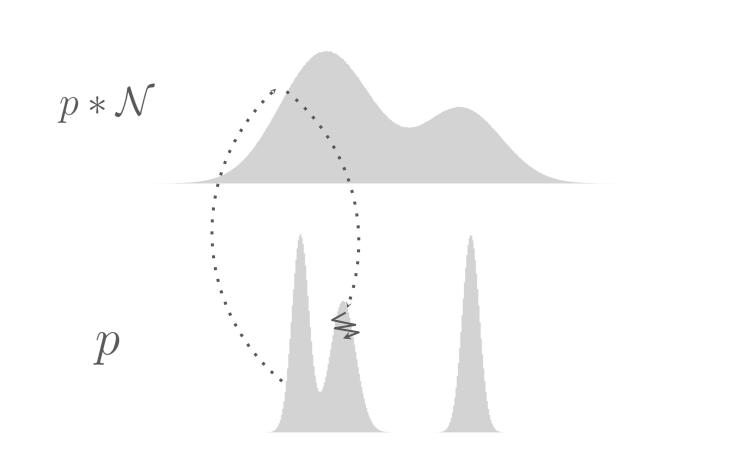


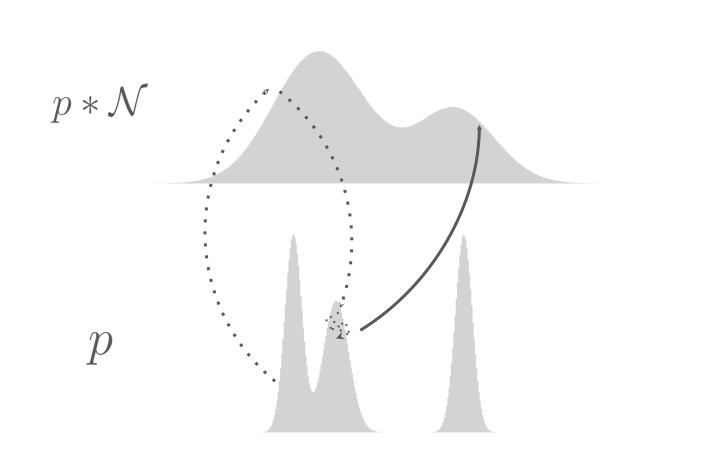


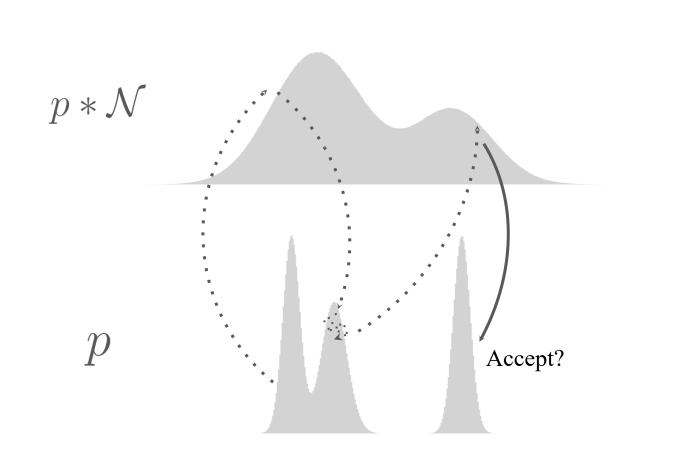


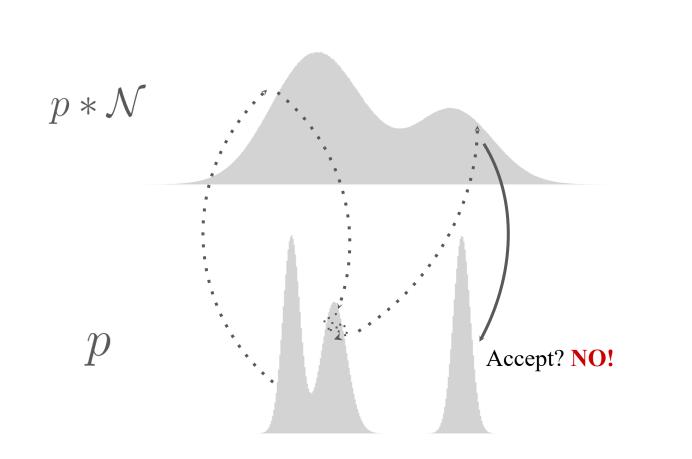


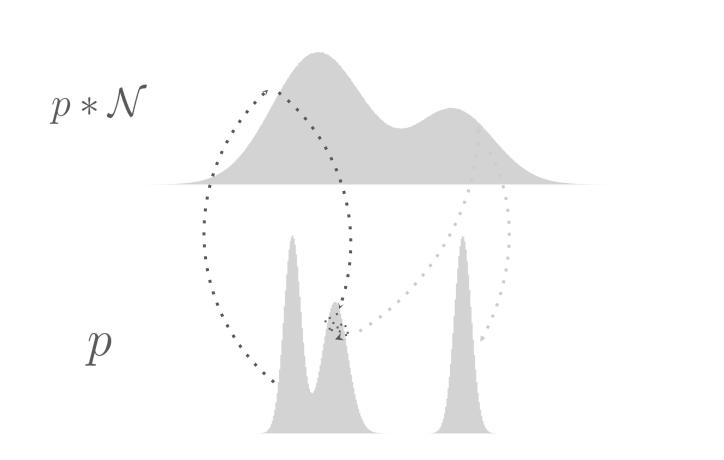


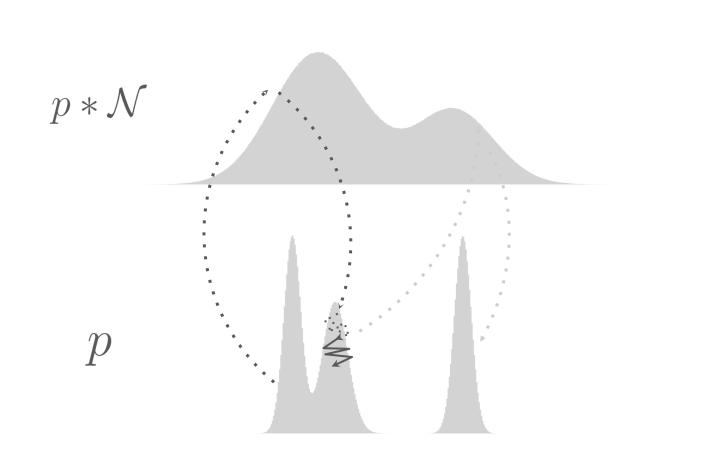


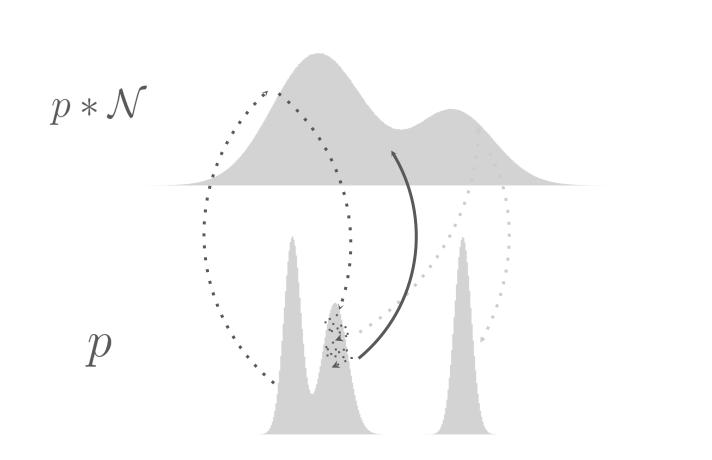


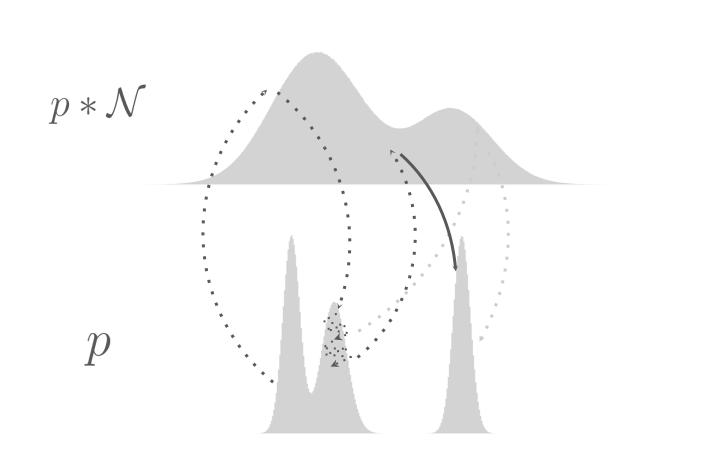


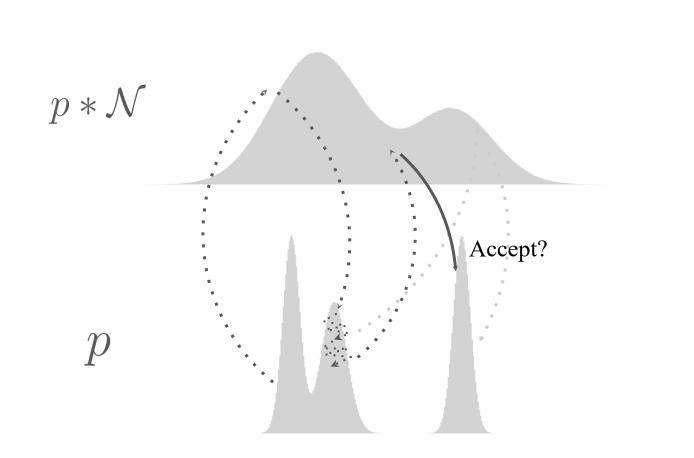


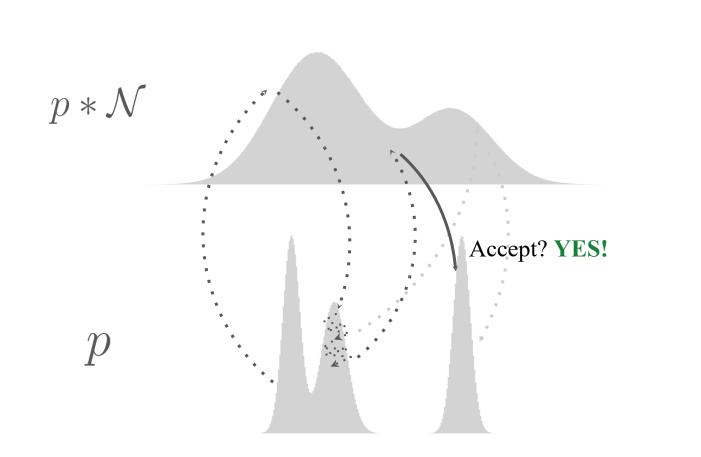


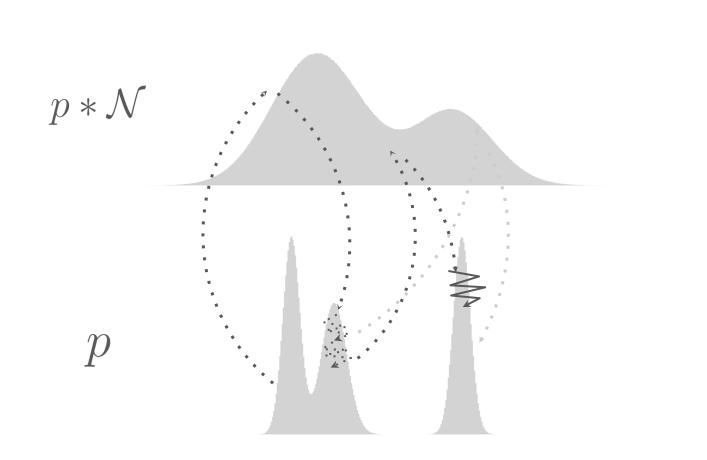


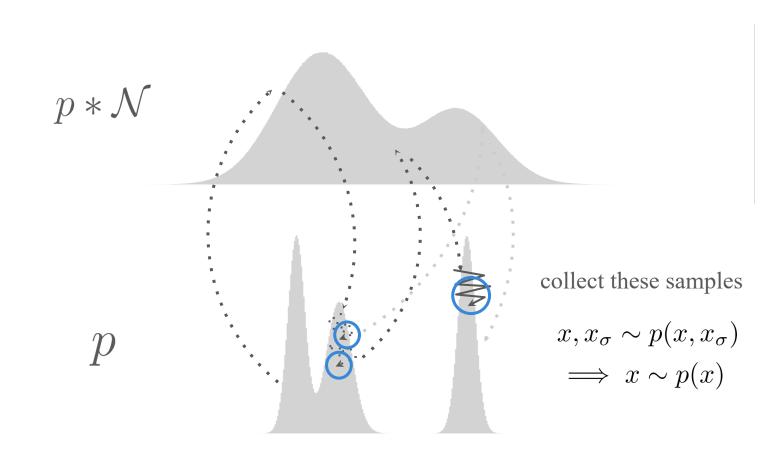




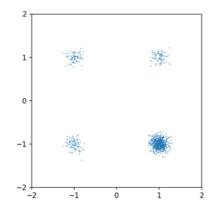


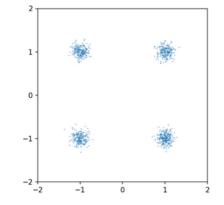


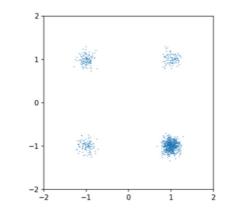




Unbalanced Modes







Ground Truth

no MH corrector

MH corrector

Choosing the Right Noise Level is Important

- Noise should not be too small

$$x \approx x_{\sigma} \sim \mathcal{N}(x_{\sigma} | x, \sigma)$$

- Noise should not be too large

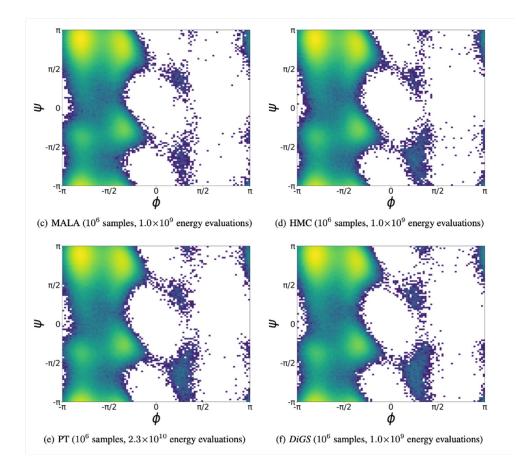
$$p(x|x_{\sigma}) \propto p(x) \mathcal{N}(x_{\sigma}|x,\sigma) \approx p(x)$$

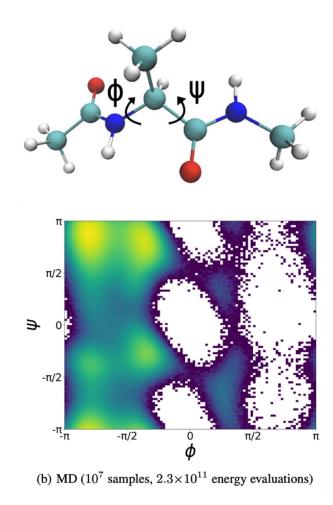
more Gaussian-like "regularizer"

- Use a noise schedule $\sigma_1 < \sigma_2 < \cdots < \sigma_T$

$$x \to x_{\sigma_T} \to x \to x_{\sigma_{T-1}} \to \dots \to x \to x_{\sigma_1} \to x \to x_{\sigma_T} \to \dots$$

Results: Alanine Dipeptide





Diffusive Gibbs Sampler

Limitation: samples are dependent

Can we train a neural network to generate independent samples?

Neural Sampler

Can we train a neural network to generate independent samples?

$$f_{\theta}: \mathcal{Z} \to \mathcal{X}$$

$$z \sim p(z), x = f_{\theta}(z)$$

$$p_{\theta}(x) = \int \delta(x - f_{\theta}(z)) p(z) dz$$

Without training data!

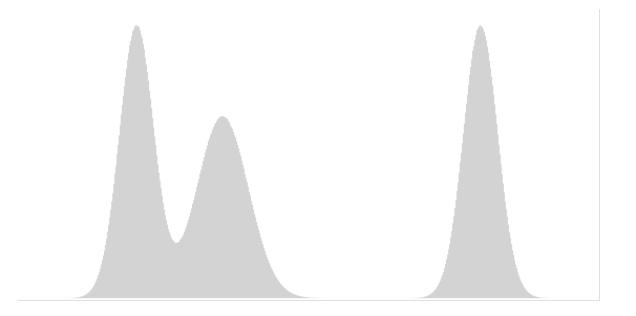
Reverse KL Divergence

Can we train a neural network to generate independent samples?

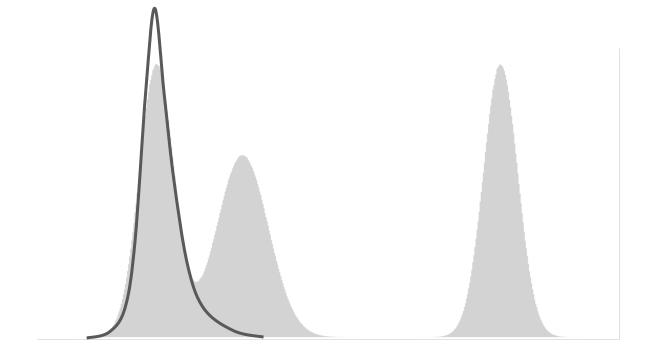
... without training data

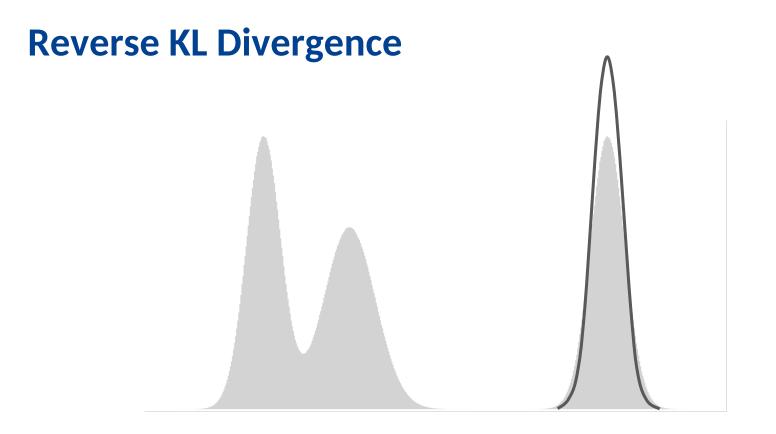
$$D_{\mathrm{KL}}[p_{\theta}||p] = \int p_{\theta}(x) \log \frac{p_{\theta}(x)}{p(x)} dx$$
$$= \int p_{\theta}(x) \log \frac{p_{\theta}(x)}{\tilde{p}(x)} dx + c.$$

Reverse KL Divergence



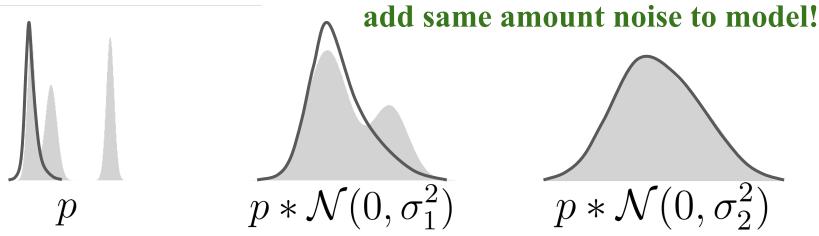
Reverse KL Divergence





How to Train Neural Samplers with Diffusion?

If trained with KL divergence... model only learns noisy distribution!



Diffusive KL divergence

Define Gaussian noisy kernels $k_t(x_t|x) = \mathcal{N}(x_t|\alpha_t x, \sigma_t^2 I)$

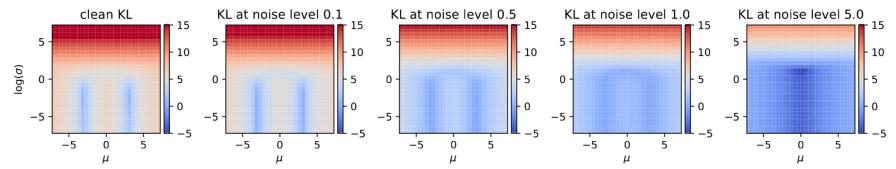
$$\text{DiKL}[p_{\theta}||p] := \sum_{t=1}^{T} w(t) D_{\text{KL}}[p_{\theta} * k_t||p * k_t]$$

$$\operatorname{DiKL}[p||q] = 0 \Leftrightarrow p = q$$

Diffusive KL divergence

Why does it avoid mode-seeking?

Model: 1D Gaussian Target: 1D Mixture of 2 Gaussians



Low noise levels: refine around local mode. •

• High noise levels: explore modes.

 $D_{\mathrm{KL}}[p_{\theta} * k_t || p * k_t]$

 $p: \text{ target density} \\ \widetilde{p}: \text{ unnormalized target density} \\ p_{\theta}: \text{ model density} \\ p_{\theta,t}: p_{\theta} * k_t \\ p_t: p * k_t \end{cases}$

Mode-seeking; (2) Intractability

$$D_{\mathrm{KL}}[p_{\theta} * k_t || p * k_t] = \int p_{\theta,t}(x_t) \log \frac{p_{\theta,t}(x_t)}{p_t(x_t)} dx_t$$

$$\nabla_{\theta} D_{\mathrm{KL}} [p_{\theta} * k_t] | p * k_t] = \int p_{\theta,t}(x_t) (\nabla_{x_t} \log p_{\theta,t}(x_t) - \nabla_{x_t} \log p_t(x_t)) \frac{\partial x_t}{\partial \theta} dx_t$$

$$\nabla_{\theta} D_{\mathrm{KL}}[p_{\theta} * k_t || p * k_t] = \int p_{\theta,t}(x_t) (\nabla_{x_t} \log p_{\theta,t}(x_t) - \nabla_{x_t} \log p_t(x_t)) \frac{\partial x_t}{\partial \theta} dx_t$$

$$\nabla_{\theta} D_{\mathrm{KL}}[p_{\theta} * k_t | | p * k_t] = \int p_{\theta,t}(x_t) (\nabla_{x_t} \log p_{\theta,t}(x_t) - \nabla_{x_t} \log p_t(x_t)) \frac{\partial x_t}{\partial \theta} dx_t$$

$$x_t = \alpha_t f_\theta(z) + \sigma_t \epsilon$$

auto-diff (VJP) by torch, jax, etc...

$$\nabla_{\theta} D_{\mathrm{KL}}[p_{\theta} * k_t || p * k_t] = \int p_{\theta,t}(x_t) \langle \nabla_{x_t} \log p_{\theta,t}(x_t) - \langle \nabla_{x_t} \log p_t(x_t) \rangle \frac{\partial x_t}{\partial \theta} dx_t$$

- do not know model density $p_{ heta}$
- but can easily generate samples from model p_{θ}

How to estimate this noisy score given only model samples?

Train a diffusion model to approximate model score!

 $\min_{\phi} \iint \|s_{\phi}(x_t, t) - \nabla_{x_t} \log k_t(x_t|x)\|^2 p_{\theta}(x) k_t(x_t|x) dx_t dx$

$$\nabla_{\theta} D_{\mathrm{KL}}[p_{\theta} * k_t | | p * k_t] = \int p_{\theta,t}(x_t) (\nabla_{x_t} \log p_{\theta,t}(x_t) - \nabla_{x_t} \log p_t(x_t)) \frac{\partial x_t}{\partial \theta} dx_t$$

- know p (up to some normalization constant)

Score Identity:

ty:
can be sampled available

$$\nabla_{x_t} \log p_t(x_t) = \int p(x|x_t) (\alpha_t (x + \nabla_x \log p(x)) - x_t) dx$$

 $p(x|x_t) \propto \tilde{p}(x)k_t(x_t|x)$ As before, use MALA/HMC/AIS, ...

Training Neural Sampler with Diffusive KL divergence

$$\nabla_{\theta} D_{\mathrm{KL}}[p_{\theta} * k_t || p * k_t] = \int p_{\theta,t}(x_t) (\nabla_{x_t} \log p_{\theta,t}(x_t) - \nabla_{x_t} \log p_t(x_t)) \frac{\partial x_t}{\partial \theta} dx_t$$

(1) Mode-covering:

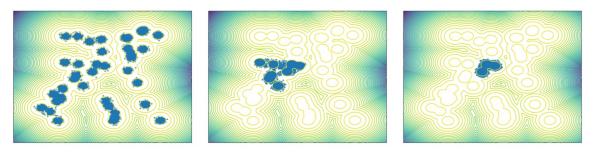
- match KL divergence at different noise levels

(2) Tractable:

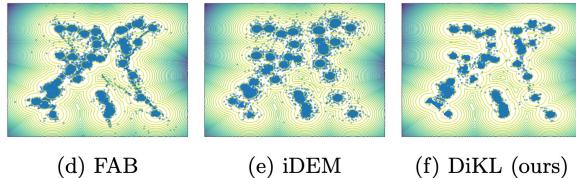
- estimate noisy model score by training a diffusion model
- estimate noisy target score by score identity with Monte Carlo

Expectation-Maximization (EM) Style Model Training!

Results: Mixture of 40 Gaussians



(a) Ground Truth (b) R-KL SM (c) R-KL Bound



(f) DiKL (ours)

(d) FAB

Results: Many Well 32 Potential Energy

Highly multi-modal: 2^{32} modes in total obtained by stacking double well 32 times.

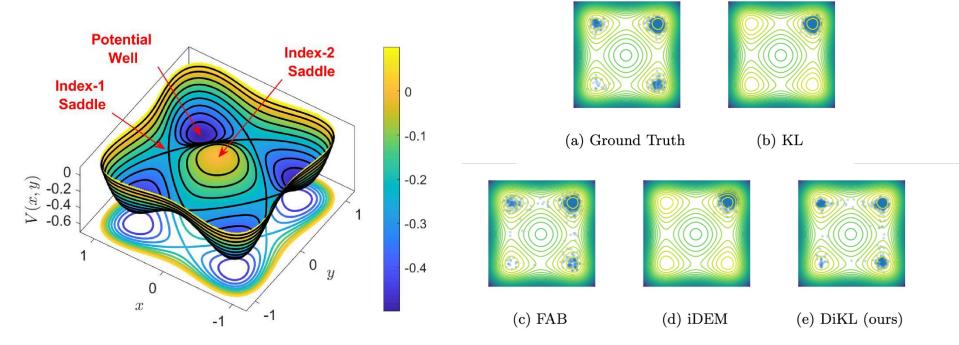
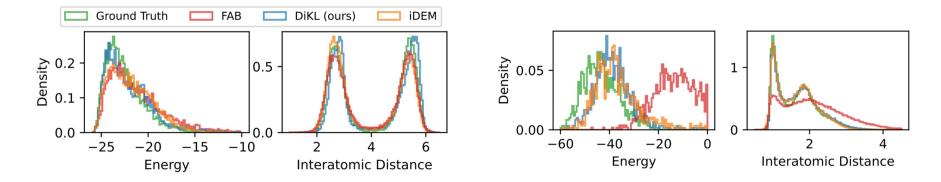


Image from https://www.chemicalreactions.io/act2/four_well_morse/four_well_morse-jekyll.html

Results: n-body Systems

Double-Well-4

Lennard-Jones-13



		FAB	iDEM	DiKL (ours)
Training	MW-32	$3.5\mathrm{h}$	$3.5\mathrm{h}$	2.5 h
	DW-4	$4.5\mathrm{h}$	$4.5\mathrm{h}$	0.8h
	LJ-13	21.5h	$6.5\mathrm{h}$	3h
Batch Sampling (1,000 samples)	MW-32	0.01s	7.2s	0.01s
	DW-4	-	2.6s	0.01s
	LJ-13	-	19.7s	0.02s

Bottleneck of Diffusion-Inspired Samplers

sampling from $p(x|x_{noise})$

- Unsatisfactory: denoising posterior sampling could still be hard
- Inevitable: no data is available to train a denoiser network

Reference and Collabroators

• Diffusive Gibbs Sampling

Wenlin Chen*, Mingtian Zhang*, Brooks Paige, José Miguel Hernández-Lobato, David Barber International Conference on Machine Learning (ICML), 2024.

• Training Neural Samplers with Reverse Diffusive KL Divergence

Jiajun He*, <u>Wenlin Chen</u>*, Mingtian Zhang*, David Barber, José Miguel Hernández-Lobato International Conference on Artificial Intelligence and Statistics (AISTATS), 2025.

Jiajun He

Mingtian Zhang Bro

David Barber

Miguel Hernández-Lobato