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Abstract

Training generative models to sample from
unnormalized density functions is an impor-
tant and challenging task in machine learn-
ing. Traditional training methods often rely
on the reverse Kullback-Leibler (KL) diver-
gence due to its tractability. However, the
mode-seeking behavior of reverse KL hinders
effective approximation of multi-modal tar-
get distributions. To address this, we pro-
pose to minimize the reverse KL along dif-
fusion trajectories of both model and target
densities. We refer to this objective as the
reverse diffusive KL divergence, which allows
the model to capture multiple modes. Lever-
aging this objective, we train neural samplers
that can efficiently generate samples from the
target distribution in one step. We demon-
strate that our method enhances sampling
performance across various Boltzmann dis-
tributions, including both synthetic multi-
modal densities and n-body particle systems.

1 Introduction

Sampling from unnormalized distributions is an essen-
tial and challenging research problem with wide appli-
cations in machine learning, Bayesian inference, and
statistical mechanics. Consider a target distribution
with an analytical but unnormalized density function:

pd(x) = exp(−E(x))/Z, (1)
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where x is the random variable to be sampled, E :
Rn → R is a lower-bounded differentiable energy func-
tion, and Z =

∫
exp(−E(x))dx is the intractable nor-

malization constant. A common approach to sampling
from pd(x) involves designing MCMC samplers (Neal
et al., 2011; Chen et al., 2024). However, for high-
dimensional, multi-modal target distributions, MCMC
methods often take a long time to converge and need
to simulate a very long chain for the samples to be
uncorrelated (Pompe et al., 2020). This presents sig-
nificant challenges in large-scale simulation problems.

Alternatively, one can approximate the target distri-
bution pd(x) with a generative model pθ(x), such as a
normalizing flow or a latent variable model pθ(x) :=∫
pθ(x|z)p(z)dz, which is easier to sample from. This

model is often referred to as a neural sampler (Levy
et al., 2017; Wu et al., 2020; Arbel et al., 2021; di Lan-
gosco et al., 2021). Training a neural sampler involves
learning the model parameters θ, which is usually
achieved by minimizing a divergence between pθ(x)
and pd(x). A common choice to train the neural sam-
pler is the reverse KL divergence due to its tractability.

However, the most significant limitation of reverse KL
is the mode collapse phenomenon due to its mode-
seeking behavior (Bishop, 2006). This means that
when the target distribution pd(x) contains multiple
distant modes, the model pθ(x) trained by reverse
KL will underestimate the variance of pd(x) and can
only capture a few modes. This is undesirable since
the target distributions, such as the Bayesian posteri-
ors (Welling and Teh, 2011) and Boltzmann distribu-
tions (Noé et al., 2019), often exhibit multiple modes.

In this paper, we propose to use an alternative objec-
tive, the diffusive KL divergence (DiKL). This objec-
tive convolves both the target and the model distri-
butions with Gaussian diffusion kernels, allowing for
better connectivity and merging of distant modes in
the noisy space. Notably, DiKL is still a valid diver-
gence between the model density and the original tar-
get distribution, which allows us to learn the original
target with better mode-covering capability. We fur-
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ther introduce a tractable gradient estimator for re-
verse DiKL, enabling practical training of neural sam-
plers with this divergence. We demonstrate the effec-
tiveness of our approach on both synthetic and n-body
system targets, where it matches previous state-of-the-
art models with reduced training and sampling costs.

2 Background: KL Divergence

Given access to target samples {x1, . . . , xN} ∼ pd(x),
it is common to minimize the forward KL divergence
to fit a generative model pθ(x) to the target pd(x):

KL(pd||pθ) ≈ − 1

N

N∑
n=1

log pθ(xn) + const., (2)

which is equivalent to maximum likelihood estimation
(MLE). However, our setting only assumes access to
the unnormalized density of pd(x) without samples,
where the reverse KL divergence is typically employed:

KL(pθ||pd) =

∫
(log pθ(x)− log pd(x))pθ(x)dx

=

∫
(log pθ(x) + E(x))pθ(x)dx + logZ, (3)

where logZ is a constant independent of x. The inte-
gration over pθ(x) can be approximated by the Monte
Carlo method with samples from pθ(x), and the gradi-
ent of the reverse KL w.r.t. the model parameter θ can
be obtained by auto differentiation with the reparam-
eterization trick (Kingma and Welling, 2013). This
objective is particularly suitable for models with ana-
lytically tractable marginal densities, such as normal-
izing flows (Papamakarios et al., 2019; Rezende et al.,
2020; Dinh et al., 2016; Kingma and Dhariwal, 2018).

For other models like a latent variable model pθ(x) =∫
pθ(x|z)p(z)dz, the log marginal log pθ(x) is typically

intractable. Instead, one can derive a tractable upper
bound of the reverse KL (Zhang et al., 2019):

KL(pθ||pd) ≤ KL(pθ(x|z)p(z)||qϕ(z|x)pd(x)), (4)

where qϕ(z|x) is a learnable variational distribution.
This reverse KL upper bound contrasts with the
more commonly studied forward KL upper bound, as
discussed in Wainwright et al. (2008); Kingma and
Welling (2013). While this variational approach cir-
cumvents the intractability of log pθ(x), it introduces
its own challenges and limitations, such as the limited
flexibility of the variational family and the potential
looseness of the variational bound.

Alternatively, Li and Turner (2017); Shi et al. (2017);
Song et al. (2020); Luo et al. (2023) directly derive the

Figure 1: We convolve a Gaussian kernel N (x̃|x, σ2)
with σ ∈ {5, 10} to the original distribution p(x). This
demonstrates that Gaussian convolution can bridge
modes and even reduce the number of modes as the
variance of the Gaussian increases.

analytical form of the gradient of the negative entropy
for the reverse KL divergence in Equation (3):

∇θ

∫
log pθ(x)pθ(x)dx =

∫
pθ(x)∇x log pθ(x)

∂x

∂θ
dx,

(5)

where the score function ∇x log pθ(x) of the model can
be approximated by training a score network using the
model samples with score matching (Hyvärinen, 2005).
This enables fitting latent variable models to unnor-
malized target densities by reverse KL minimization
without any variational approximation. However, the
mode-seeking behavior of reverse KL typically results
in the trained model pθ(x) collapsing to a small num-
ber of modes in a multi-modal target distribution.

3 Diffusive KL Divergence

One effective way to bridge and merge isolated modes
is Gaussian convolution, which has been successfully
used in training diffusion models (Sohl-Dickstein et al.,
2015; Song et al., 2021; Ho et al., 2020) and encour-
aging exploration of samplers (Lee et al., 2021; Huang
et al., 2023; Chen et al., 2024). It can also potentially
reduce the number of modes due to the fact that Gaus-
sian convolution effectively convexifies any functions
to its convex envelope (Mobahi and Fisher, 2015). In
Figure 1, we provide a toy visualization showing that
by increasing the variance of the Gaussian convolu-
tion, we can bridge modes or even reduce the number
of modes in the original multi-modal distribution.

To construct a valid divergence that leverages Gaus-
sian convolutions, one can convolve two distribu-
tions p(x) and q(x) with the same Gaussian kernel
k(x̃|x) = N (x̃|αx, σ2I) and then define the KL di-
vergence between the convolved distributions p̃(x̃) =∫
k(x̃|x)p(x)dx and q̃(x̃) =

∫
k(x̃|x)q(x)dx. This type

of divergence construction is known as the spread di-
vergence (Zhang et al., 2020).
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Definition 3.1 (Spread KL Divergence).

SKLk(p||q) ≡ KL(p̃||q̃) = KL(p ∗ k||q ∗ k), (6)

where ∗ denotes the convolution operator: π̃ ≡ π ∗ k ≡∫
k(x̃|x)π(x)dx.

The spread KL divergence is a theoretically well-
defined divergence as SKLk(p||q) = 0⇔ p = q for any
Gaussian kernel k, as shown in Zhang et al. (2020). In
practice, the choice of k is crucial for model training,
and selecting the optimal kernel is a challenging prob-
lem. Inspired by the recent success of diffusion mod-
els, instead of selecting one k, one can use a sequence
of Gaussian kernels with different lengthscales to con-
struct a “multi-level spread KL divergence”, which we
refer to as diffusive KL divergence (DiKL).

Definition 3.2 (Diffusive KL Divergence).

DiKLK(p||q) ≡
T∑

t=1

w(t)KL(p ∗ kt||q ∗ kt), (7)

where w(t) is a positive scalar weighting function and
K = {k1, · · · , kT } is a set of (scaled) Gaussian convo-
lution kernels denoted as kt(xt|x) = N (xt|αtx, σ

2
t ).

Since the DiKL can be seen as an average of multiple
spread KL divergence with different Gaussian kernels,
it is straightforward to show that it is a valid diver-
gence, i.e., DiKLK(p||q) = 0⇔ p = q.

The DiKL has been successfully applied to some
important applications such as 3D generative mod-
els (Poole et al., 2022; Wang et al., 2024) and dif-
fusion distillation (Luo et al., 2024; Xie et al., 2024).
However, in these cases, p ∗ kt corresponds to a given
pre-trained diffusion model. In contrast, our setting
only assume access to the unnormalized target density
without any samples, and therefore p∗kt is usually in-
tractable. In the next section, we propose a practical
gradient estimator of the reverse diffusion KL diver-
gence for training neural samplers to capture diverse
modes in unnormalized target densities.

4 Training Samplers with DiKL

We focus on training neural samplers defined by a la-
tent variable model:

pθ(x) =

∫
pθ(x|z)p(z)dz, (8)

where p(z) = N (z|0, I) and pθ(x|z) is parameterized
by a neural network: pθ(x|z) = p(x|gθ(z)).

Unlike the conventional KL divergence, which requires
the model pθ(x) to have a valid density function (Ar-
jovsky et al., 2017), SKL and DiKL are well-defined

even for singular distributions (e.g., delta function),
as discussed by Zhang et al. (2020). Therefore, we can
let the generator pθ(x|z) be a deterministic function
gθ and define the “generalized model density”1 as:

pθ(x) =

∫
δ(x− gθ(z))p(z)dz. (9)

This type of model is also referred to as an implicit
model (Goodfellow et al., 2014; Huszár, 2017), which
is more flexible than the latent variable model defined
in Equation (8), as it avoids pre-defining a constrained
distribution family for p(x|gθ(z)).

We now explore how to train such a neural sampler
pθ(x) to fit the unnormalized target density pd(x) us-
ing the reverse DiKL, denoted as DiKLK(pθ||pd). For
simplicity, we first consider DiKL with a single kernel
kt; the extension to multiple kernels is straightforward.
The reverse DiKL can be expressed as:

DiKLkt
(pθ||pd) ≡ KL(pθ ∗ kt||pd ∗ kt)

=

∫
pθ(xt) (log pθ(xt)− log pd(xt)) dxt, (10)

where pθ(xt) =
∫
kt(xt|x)pθ(x)dx and pd(xt) =∫

kt(xt|x)pd(x)dx2. The integration over pθ(xt) can
be approximated using Monte Carlo integration. This
involves first sampling x′ ∼ pθ(x) and then xt ∼
kt(xt|x′). Inspired by Poole et al. (2022); Wang et al.
(2024); Luo et al. (2024), we can derive the analytical
gradient of Equation (10) w.r.t θ as follows:

∇θDiKLkt(pθ||pd) = ∇θKL(pθ ∗ kt||pd ∗ kt) (11)

=

∫
pθ(xt) (∇xt log pθ(xt)−∇xt log pd(xt))

∂xt

∂θ
dxt,

The derivation can be found in Appendix A. The Ja-
cobian term ∂xt

∂θ can be efficiently computed by the
vector-Jacobian product (VJP) with auto differenti-
ation. However, both score functions, ∇xt log pθ(xt)
and ∇xt log pd(xt), in Equation (11) are intractable
to compute directly. To address this, we approx-
imate these scores using denoising score matching
(DSM) (Vincent, 2011) and mixed score identity
(MSI) (De Bortoli et al., 2024; Phillips et al., 2024),
respectively. Specifically, we estimate ∇xt log pθ(xt)
by training a score network with DSM using samples

1In this case, the marginal distribution may not be ab-
solutely continuous (a.c.) w.r.t. the Lebesgue measure,
which implies that it may not have a valid density func-
tion, e.g., when Dim(z) < Dim(x).

2To avoid notation overloading, we slightly abuse pd to
represent the density function for both the clean target
and the convolved target density pd ∗ kt. We distinguish
them by their arguments: pd(x) denotes the original target
density, while pd(xt) refers to the convolved density. The
also applies to the kernel kt and model density pθ.
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from the sampler, and estimate ∇xt log pd(xt) by MSI
with Monte Carlo estimation. Below, we explain these
two estimators in detail.

4.1 Estimating ∇xt
log pθ(xt) with DSM

Denoising score matching (DSM) (Vincent, 2011) has
been successfully used in training score-based diffusion
models (Song et al., 2021). DSM is based on the de-
noising score identity (DSI):

Proposition 4.1 (Denoising Score Identity). For
any convolution kernel k(xt|x), we have

∇xt
log pθ(xt) =

∫
∇xt

log k(xt|x)pθ(x|xt)dx, (12)

where pθ(x|xt) ∝ k(xt|x)pθ(x) is the model posterior.

See Appendix B.1 for a proof. We can then train a
time-conditioned score network sϕ(xt) to approximate
∇xt

log pθ(xt) by minimizing the score matching loss
w.r.t. ϕ:∫
∥sϕ(xt)−

∫
∇xt log k(xt|x)pθ(x|xt)dx∥22pθ(xt)dxt

=

∫∫
∥sϕ(xt)−∇xt

log k(xt|x)∥22pθ(x, xt)dxdxt+const.,

(13)

where the equivalence can be shown by expanding
the L2 norm and ignoring a term that is independent
of ϕ. The integration over pθ(x, xt) = pθ(x)k(xt|x)
can be approximated by sampling x′ ∼ pθ(x) then
x′
t ∼ k(xt|x′). Once trained, we plug sϕ(xt) into Equa-

tion (11) to estimate the gradient.

4.2 Estimating ∇xt
log pd(xt) with MSI

To estimate the gradient defined in Equation (11),
we also need to estimate the noisy target score
∇xt

log pd(xt). Since no samples from pd(x) are avail-
able, we can no longer use DSM to estimate the
score. Fortunately, we have access to the unnormalized
target density and its score function ∇x log pd(x) =
−∇xE(x), which allows us to estimate this score by
target score identity (TSI, De Bortoli et al., 2024):

Proposition 4.2 (Target Score Identity). For
any translation-invariant convolution kernel k(xt|x) =
k(xt − αtx), we have

∇xt
log pd(xt) =

1

αt

∫
∇x log pd(x)pd(x|xt)dx, (14)

where pd(x|xt) ∝ k(xt|x)pd(x) is the target posterior.

See Appendix B.2 for a proof. In practice, the TSI
estimator has larger variance when the Gaussian ker-
nel k(xt|x) has larger variance, while the DSI estima-
tor exhibits higher variance when k(xt|t) has smaller

variance. To address this, De Bortoli et al. (2024);
Phillips et al. (2024) propose a convex combination of
the DSI and TSI to interpolate between them, favoring
TSI when k(xt|x) has smaller variance and DSI when
k(xt|x) has larger variance, thus minimizing the overall
variance of the estimator. We refer to this estimator
as the mixed score identity (MSI).

Proposition 4.3 (Mixed Score Identity). Using a
Gaussian convolution k(xt|x) = N (xt|αtx, σ

2
t I) with a

variance-preserving (VP) scheme σ2
t = 1 − α2

t , and a
convex combination of TSI and DSI with coefficients
α2
t and 1− α2

t , respectively, we have

∇xt
log pd(xt)

=

∫
(αt(x +∇x log pd(x))− xt)pd(x|xt)dx. (15)

See Appendix B.3 for a proof. This identity estimates
the score ∇xt

log p(xt) based on the original target
score∇x log pd(x) which can be directly evaluated. We
can plug it into Equation (11) as part of the gradient
approximation.

However, to use this estimator, we also need to ob-
tain samples from the denoising posterior pd(x|xt) to
approximate the integration over x in Equation (15).
We notice that the posterior pd(x|xt) is proportional
to the joint p(x, xt) = k(xt|x)p(x), taking the form

pd(x|xt) ∝ exp
(
−E(x)− ∥αtx− xt∥2/2σ2

t

)
, (16)

which has a tractable score function (Gao et al., 2020;
Huang et al., 2023; Chen et al., 2024):

∇x log pd(x|xt) = −∇xE(x)− αt(αtx− xt)

σ2
t

. (17)

Therefore, common score-based sampler such as
HMC (Duane et al., 1987; Neal et al., 2011),
MALA (Roberts and Tweedie, 1996; Roberts and
Stramer, 2002), and AIS (Neal, 2001) can be di-
rectly employed to sample from the denoising poste-
rior p(x|xt). Notably, compared to sampling from the
original target distribution p(x) ∝ exp(−E(x)) using
standard score-based samplers, incorporating the ad-
ditional quadratic term in Equation (16) improves the
Log-Sobolev conditions, which significantly enhances
the convergence speed of samplers like ULA (Vempala
and Wibisono, 2019; Huang et al., 2023).

It is worth noting that it is not crucial to have a per-
fect posterior sampler. This is because our method
essentially works in a bootstrapping manner: the pos-
terior samples improve the model, and a better model
in turn brings the posterior samples closer to the true
target. Having said that, accurate posterior sampling
may improve the convergence rate of the model.
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Figure 2: Heatmap of (log scale) KL divergence at different noise levels between a Gaussian model (with mean
parameter µ and standard deviation parameter σ) and a two-mode MoG target in 1D. At lower noise levels (or in
the extreme case, the standard reverse KL), the divergence is highly mode-seeking, with the model favoring either
one of the two modes in the target distribution. On the other hand, perhaps surprisingly, the KL divergence
becomes more mode-covering at a higher noise level, encouraging the model to cover both modes of the target.

Algorithm 1 Training Neural Samplers with DiKL

Input: Target pd(x) ∝ exp(−E(x)), Gaussian ker-
nels {(αt, σt)}Tt=1; score network training step Nϕ;
weighting function w(t); Randomly initialized θ, ϕ.
repeat

# Train score network sϕ(xt) by DSM:
for i ∈ [1, · · · , Nϕ] do

z ∼ p(z), x← gθ(z), t ∼ U{1, · · · , T}
ϵ ∼ N (0, I), xt ← αtx + σtϵ
Update ϕ with ∇ϕ∥sϕ(xt)−∇xt

log k(xt|x)∥22
end for
# Train neural sampler gθ(z) by DiKL:
z ∼ p(z), x← gθ(z)
t ∼ U{1, · · · , T}, ϵ ∼ N (0, I), xt ← αtx + σtϵ
x′(1:K) ∼ pd(x|xt) ▷ posterior sampling

dp ← 1
K

∑K
k=1(αt(x

′(k) +∇ log pd(x′(k)))− xt)
▷ MSI estimator

ℓ← w(t)stopgrad(sϕ(xt)− dp)⊤xt

▷ surrogate loss for VJP
Update θ with ∇θℓ

until convergence

We summarize the whole procedure of training neu-
ral samplers with DiKL in Algorithm 1. In short,
our training algorithm forms a nested loop: in the
inner loop, we train a score network sϕ(xt) to esti-
mate the model score ∇xt

log pθ(xt) with DSM; in the
outer loop, we first estimate the noisy target score
∇xt log pd(xt) with MSI, and then update the neural
sampler with the gradient as in Equation (11) using
our estimated noisy target and model scores. One
might think that this nested training procedure im-
poses a high computational burden. Fortunately, we
found that the inner loop typically converged within
50-100 steps in practice, minimally affecting the over-
all training cost. In the following, we give an empirical
illustration of how DiKL can encourage mode covering.

4.3 DiKL Encourages Mode-Covering

Unlike the mode-seeking nature of reverse KL (R-KL),
DiKL promotes better mode coverage. In this sec-
tion, we provide an intuitive explanation to illustrate
how this is achieved. Assume we have a 1D Mix-
ture of Gaussian (MoG) target with two components
pd(x) = 1

2N (x|−3, 0.01) + 1
2N (x|3, 0.01). For simplic-

ity, we fit a 1D Gaussian model pθ(x) = N (x|µ, σ2) to
this target. As this model only contains two param-
eters θ = {µ, σ}, we visualize log KL and log DiKL
at different noise levels against these two parameters
to develop a better understanding of the reverse DiKL
objective, as shown in Figure 2.

At lower noise levels (or in the extreme case, R-KL),
the divergence is highly mode-seeking, with the model
favoring either one of the two modes in the target dis-
tribution. However, perhaps surprisingly, at higher
noise levels, DiKL becomes more mode-covering, forc-
ing µ to converge toward the mean of the two modes
and σ to cover both modes. This behavior explains
why DiKL encourages the model to cover more modes:
higher noise levels push the model to explore adjacent
modes, while lower noise levels prevent the model from
forgetting previously discovered modes.

Below, we demonstrate this mode-covering property
on a MoG-40 target before proceeding to more com-
plex Boltzmann distributions. Before presenting the
results, we first outline other approaches to encourag-
ing mode coverage, which we will use as baselines.

5 Related Works and Comparison

Several different types of neural samplers have been
proposed in the literature, which we summarize below.

Latent variable models as samplers. Training la-
tent variable models as neural samplers with Fisher
divergence, reverse KL (R-KL-SM) or its upper bound
(R-KL Bound) has been explored in the literature (Li
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(a) Ground Truth (b) R-KL SM (c) R-KL Bound (d) FAB (e) iDEM (f) DiKL (ours)

Figure 3: Samples on MoG-40. We train each method for 2.5 hours, which allows all to converge. FAB and
iDEM use replay buffers as in Midgley et al. (2023); Akhound-Sadegh et al. (2024). The high-density regions
of this target are within [−50, 50]. All methods were trained on the original scale, except for iDEM, which is
normalized to [−1, 1] following Akhound-Sadegh et al. (2024). This normalization may simplify the task.

Table 1: Comparison of the log-density of samples gen-
erated by various methods, evaluated on the target
density of MoG-40. “True” indicates the log density
of true samples from the target distribution. We only
report the evaluation methods that can cover all the
modes, see Figure 3 for the sample visualization.

True FAB iDEM DiKL (Ours)

log pd(x) -6.85 -10.74 -8.33 -7.21

and Turner, 2017; Shi et al., 2017; Zhang et al., 2019;
Song et al., 2020; Luo et al., 2023); See Equations (3)
to (5). Such methods typically struggle when the
target distribution is multi-modal due to the mode-
seeking nature of the objectives.

Flow-based samplers. Flow AIS bootstrap (FAB)
(Midgley et al., 2023) is the state-of-the-art (SOTA)
flow-based sampler, which is trained by minimizing the
α-2 divergence, which exhibits mass covering property.
Note that FAB employs a prioritized replay buffer to
memorize the regions that have been explored.

Diffusion-based samplers. Several works have ex-
plored diffusion-based samplers, such as path integral
sampler (PIS, Zhang and Chen, 2022) and denoising
diffusion sampler (DDS, Vargas et al., 2023). How-
ever, these methods typically involve backpropagating
through SDE with numerical integration during train-
ing, which is not scalable. Iterated denoising energy
matching (iDEM, Akhound-Sadegh et al., 2024) is the
SOTA diffusion-based sampler that trains a score net-
work to approximate the noisy score of the target es-
timated by TSI. iDEM also employs a reply buffer to
balance exploration and exploitation.

We compare our methods with each type of SOTA neu-
ral sampler on a mixture of 40 Gaussians (MoG-40)
target in 2D following Midgley et al. (2023), which al-
lows us to visually examine their mode-covering prop-
erties. As shown in Figure 3, our approach achieves
better sample quality than all other compared neu-
ral samplers. R-KL-based samplers struggle to cap-

ture the majority of modes due to the mode-seeking
property. FAB captures all modes but exhibits heavy
density connections between modes due to the flow
architecture. This is in contrast to our sampler which
only requires using standard neural networks, which is
more flexible. As for iDEM, while it does not exhibit
such connections, its samples look noisy. This is be-
cause iDEM requires score estimation across all noise
levels from the target towards a pure Gaussian distri-
bution, which leads to high variance at larger noise
levels due to TSI. In contrast, our approach samples
directly from a generator gθ and uses a Gaussian kernel
only to connect adjacent modes, allowing for a much
smaller noise level and more manageable variance.

6 Boltzmann Generator Application

One important application of neural samplers is to
generate samples from Boltzmann distributions, where
the target distribution defines the probability density
that a system will be in a certain state as a function
of that state’s energy and the temperature of the sys-
tem. This type of neural sampler is also known as
Boltzmann Generator (Noé et al., 2019). In the fol-
lowing, we will omit the temperature for simplicity, as
it can be absorbed into the energy function.

In this paper, we use our neural sampler gθ to gen-
erate samples from n-body systems as a Boltzmann
Generator, where the energy is defined over the pair-
wise distances between n particles. These systems can
be defined in either internal or Cartesian coordinates.
Note that, for Cartesian coordinates, the energy of the
system will remain invariant if we apply rotation, re-
flection, translation, and permutation to the entire sys-
tem. Formally, representing each configuration of the
system by a matrix X ∈ Rn×d, our target distribu-
tion pd(X) is invariant to the product group of the
Euclidean group and the Symmetric group of degree
n, i.e. G = E(d)× Sn.

This invariance presents a challenge when training the
neural sampler. Recall the sampler learns a mapping
gθ : Z → X , where X represents the space of sys-
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(a) Ground Truth (b) KL (c) FAB (d) iDEM (e) DiKL (ours)

Figure 4: 2D marginal (1st and 3rd dimensions) of samples from MW-32. Our approach and FAB successfully
found all the modes, while iDEM and the neural sampler trained with standard KL divergence only capture one.
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Figure 5: Left. Wasserstein-2 (W-2) distance of sam-
ples and total variation distance (TVD) of energy on
MW-32. Our methods, along with FAB, clearly out-
perform iDEM and KL in this evaluation. Right. His-
togram of sample energy. Our approach outperforms
both FAB and iDEM. Note that although the KL ap-
proach yields better energy, it captures only one mode,
as shown in Figure 4.

tem configurations, and Z represents the latent space.
If X includes configurations with symmetries but Z
does not account for these symmetries, the network
would need to model every equivalent configuration
separately (for example, the model would need to as-
sign same density for the configurations in one equiva-
lence class respect to G), leading to inefficient training.

On the other hand, we can parameterize the neural
sampler gθ with an Equivariant Graph Neural Net-
works (EGNN, Satorras et al., 2021; Hoogeboom
et al., 2022), ensuring that gθ is G-equivariant.

Proposition 6.1. Let the neural sampler gθ : Z → X
be an G-equivalence mapping. If the distribution p(Z)
over the latent space Z is G-invariant, then pθ(X) =∫
δ(X − gθ(Z))p(Z)dZ is G-invariant.

The proof can be found in Appendix C.1. Therefore,
our neural sampler does not need to explicitly model
the invariance, simplifying the training process.

However, another challenge arises from translation. As

noted by Midgley et al. (2024), there does not exist a
translation invariant probability measure in Euclidean
space. Therefore, following Midgley et al. (2024);
Satorras et al. (2021); Hoogeboom et al. (2022);
Akhound-Sadegh et al. (2024), we constrain both X
and Z to be the subspace of Rn×d with zero center of
mass, i.e., X⊤1 = Z⊤1 = 0. This allows us to embed
the product group in n × d into an orthogonal group
in nd-dimensional space: E(d)× Sn ↪→ O(nd).

Having decided on the architecture for the neural sam-
pler gθ and tackled the translation invariance, we now
consider the scoring network sϕ for the neural sampler.
According to Papamakarios et al. (2021, Lemma 2), if
G is a subgroup of the orthogonal group, then the gradi-
ent of a G-invariant function is G-equivariant. There-
fore, the score network for the neural sampler which
defines the G-invariant distribution is G-equivariant.
To achieve this, we train an EGNN score network
with denoising score matching (DSM) within the zero-
centered subspace, following Hoogeboom et al. (2022).

Additionally, when both the model and target den-
sity are G-invariant, the identity ∇ log pθ(Xt) −
∇ log pd(Xt) in the gradient of reverse DiKL as
shown in Equation (11) should also be G-equivariant.
This necessitates a G-equivariant MSI estimator for∫

(αt(X+∇ log pd(X))−Xt)pd(X|Xt)dx. Fortunately,
this holds true for a broad class of estimators under
mild conditions, including importance sampling and
AIS estimators, with different choices of samplers for
pd(X|Xt), such as MALA and HMC. Detailed discus-
sion can be found in Appendix C.

6.1 Experiments and Results

We evaluate our approach on three distinct Boltz-
mann distributions: Many-Well-32 in the internal co-
ordinate, and Double-Well-4 and Lennard-Jones-13 in
the Cartesian coordinate. These tasks aim to pro-
vide a comprehensive evaluation of highly multi-modal
targets, encompassing both balanced and imbalanced
modes, as well as energy functions exhibiting invari-
ance. Detailed setups can be found in Appendix D.
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Table 2: Comparison of our approach with FAB and iDEM on Cartisian DW-4 and LJ-13. We report the
Wasserstein-2 (W-2) distance of samples, and total variation distances (TVDs) of energy and atomic distances.
We evaluate each metric using 2,000 samples repeated ten times and report the mean and standard deviation.

Cartesian DW-4 (8D) Cartesian LJ-13 (39D)

Sample W-2 Energy TVD Distance TVD Sample W-2 Energy TVD Distance TVD

FAB 1.554 ± 0.015 0.224 ± 0.008 0.097 ± 0.005 4.938 ± 0.009 0.902 ± 0.010 0.252 ± 0.002
iDEM 1.593 ± 0.012 0.197 ± 0.010 0.103 ± 0.005 4.172 ± 0.007 0.306 ± 0.013 0.044 ± 0.001

DiKL (ours) 1.579 ± 0.019 0.162 ± 0.016 0.146 ± 0.006 4.233 ± 0.006 0.284 ± 0.011 0.046 ± 0.002
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Figure 6: Histogram of sample energy and interatomic
distance on Cartesian DW-4 and LJ-13. Our ap-
proach achieves comparable performance on both tasks
to iDEM, with only 1 number of function evaluation
(NFE), while iDEM requires 1,000 NFEs.

Internal MW-32. Midgley et al. (2023) introduced
this target by stacking 2D Double-Well 32 times, form-
ing a distribution with 232 modes in total. These
modes carry different weights. Therefore, this task
can assess whether each method successfully covers all
modes and accurately captures their weights.

We report the Wasserstein-2 (W-2) distances between
samples yielded by these methods and ground truth
samples obtained by MCMC. We also evaluate the
sample energy and report the total-variant distance
(TVD) between the distribution of the energy of sam-
ples. We note that both metrics have their limitations:
W-2 tends to be less sensitive to noisy samples, which
can be particularly detrimental in some n-body sys-
tems. Conversely, the energy TVD is less sensitive to
missing modes. To provide a comprehensive evalua-
tion, we plot both metrics together in Figure 5, and
also visualize the samples along two selected axes to
assess mode coverage in Figure 4.

Table 3: Training and sampling wall-clock times for
FAB, iDEM and our sampler. We measure this on a
single NVIDIA A100 (80GB) GPU. We omit the sam-
pling times for FAB on DW-4 and LJ13 as it is im-
plemented in JAX with JIT compilation, making di-
rect comparison with the other methods implemented
in PyTorch not feasible. However, we expect FAB to
have slightly slower sampling times than our method
due to its large flow network.

FAB iDEM DiKL (ours)

Training
MW-32 3.5h 3.5h 2.5h
DW-4 4.5h 4.5h 0.8h
LJ-13 21.5h 6.5h 3h

Batch Sampling
(1,000 samples)

MW-32 0.01s 7.2s 0.01s
DW-4 - 2.6s 0.01s
LJ-13 - 19.7s 0.02s

Cartesian DW-4 and LJ-13. Köhler et al. (2020)
introduced these two tasks to access the model under
invariance target distributions. Specifically, the target
energy is invariant to the product group G = E(d)×Sn
where d = 2 and 3 for DW and LJ, respectively.

We compare our approach with FAB and iDEM. We
report the W-2 distance for samples, TVD for energy,
and TVD for interatomic distance in Table 2. We also
visualize histograms for sample energy and interatomic
distance in Figure 6. As shown, our method achieves
competitive performance with both FAB and iDEM on
DW-4, and notably outperforms FAB on LJ-13.

Training and Sampling Time. We report the train-
ing and sampling times for our approach and baselines
in Table 3. Notably, our method shows faster train-
ing and sampling times compared to both FAB and
iDEM. FAB depends on a large and limited normal-
izing flow, which leads to significantly longer training
times, particularly for complex tasks like LJ. In con-
trast, our approach maintains consistent training times
across different tasks. Additionally, since iDEM is
diffusion-based and requires intensive computation for
sampling, our approach is approximately 1,000 times
faster in sampling.
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Discussion. Our method is comparable to SOTA
Boltzmann generators, including FAB and iDEM,
and has significantly faster training and sampling
times. Additionally, we highlight that, unlike iDEM
and FAB, which use replay buffers for exploration-
exploitation balance, our approach achieves this with-
out relying on any replay buffer, offering a more clean,
straightforward and easy-to-extend solution.

7 Conclusion

In this work, we proposed a new training paradigm for
neural samplers using reverse diffusive KL divergence,
providing a simple yet efficient method to achieve the
mode-covering property. We demonstrated its effec-
tiveness on both synthetic and n-body system targets.
Our approach matches or outperforms SOTA methods
like FAB and iDEM, with significantly improved train-
ing and sampling efficiency and without relying on any
replay buffer. The limitations of our approach and po-
tential future work are discussed in Appendix E.
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A Derivation of Analytical Gradient for Reverse DiKL

The gradient of reverse DiKL w.r.t. the model parameter θ is given by

∇θDiKLkt
(pθ||pd) =

∫
pθ(xt) (∇xt

log pθ(xt)−∇xt
log pd(xt))

∂xt

∂θ
dxt. (18)

Proof. The reverse DiKL at time t is defined as

DiKLkt(pθ||pd) =

∫
(log pθ(xt)− log pd(xt)) pθ(xt)dxt. (19)

We first reparameterize xt as a function of z and ϵ:

xt = αtgθ(z) + σtϵt ≡ hθ(z, ϵt), (20)

where z ∼ p(z) ≡ N (z|0, I) and ϵt ∼ p(ϵt) ≡ N (ϵt|0, I). It then follows that

∇θDiKLkt(pθ||pd) = ∇θ

∫
(log pθ(xt)− log pd(xt)) pθ(xt)dxt (21)

= ∇θ

∫∫∫
(log pθ(xt)− log pd(xt)) δ(xt − hθ(z, ϵt))p(z)p(ϵt)dxtdzdϵ (22)

=

∫∫ (
∇θ log pθ(xt) +∇xt

log pθ(xt)
∂xt

∂θ
−∇xt

log pd(xt)
∂xt

∂θ

)∣∣∣∣
xt=hθ(z,ϵt)

p(z)p(ϵt)dzdϵ

(23)

=

∫ (
∇θ log pθ(xt) +∇xt log pθ(xt)

∂xt

∂θ
−∇xt log pd(xt)

∂xt

∂θ

)
pθ(xt)dxt (24)

=

∫ (
∇xt

log pθ(xt)
∂xt

∂θ
−∇xt

log pd(xt)
∂xt

∂θ

)
pθ(xt)dxt. (25)

The last line follows since∫
∇θ log pθ(xt)pθ(xt)dx =

∫
∇θpθ(xt)dx = ∇θ

∫
pθ(xt)dx = ∇θ1 = 0. (26)

This completes the proof.

B Derivations of Score Identities

B.1 Derivation of Denoising Score Identity (DSI)

Proposition 4.1 (Denoising Score Identity). For any convolution kernel k(xt|x), we have

∇xt
log pθ(xt) =

∫
∇xt

log k(xt|x)pθ(x|xt)dx, (27)

where pθ(x|xt) ∝ k(xt|x)pθ(x) is the model posterior.

Proof. It follows that

∇xt
log pθ(xt) =

∇xt
pθ(xt)

pθ(xt)
(28)

=
∇xt

∫
k(xt|x)pθ(x)dx

pθ(xt)
(29)

=

∫
∇xtk(xt|x)pθ(x)dx

pθ(xt)
(30)

=

∫
∇xt

log k(xt|x)k(xt|x)pθ(x)dx

pθ(xt)
(31)

=

∫
∇xt

log k(xt|x)pθ(x|xt)dx. (32)
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Note that the same argument can be used to derive DSI for the target distribution pd(x):

∇xt
log pd(xt) =

∫
∇xt

log k(xt|x)pd(x|xt)dx. (33)

B.2 Derivation of Target Score Identity (TSI)

Proposition 4.2 (Target Score Identity). For any translation-invariant convolution kernel k(xt|x) = k(xt−
αtx), we have

∇xt
log pd(xt) =

1

αt

∫
∇x log pd(x)pd(x|xt)dx, (34)

where pd(x|xt) ∝ k(xt|x)pd(x) is the target posterior.

Proof. Since k(xt|x) = k(xt − αtx) is translation-invariant, we have

∇xt log k(xt|x) = −α−1∇x log k(xt|x). (35)

But by Bayes rule, we have
∇x log k(xt|x) = ∇x log pd(x|xt)−∇x log pd(x). (36)

Using DSI, it then follows that

∇xt
log pd(xt) =

∫
∇xt

k(xt|x)pd(x|xt)dx (37)

= −α−1

∫
∇xk(xt|x)pd(x|xt)dx (38)

= α−1

∫
(∇x log pd(x)−∇x log pd(x|xt)) pd(x|xt)dx (39)

= α−1

∫
∇x log pd(x)pd(x|xt)dx. (40)

The last equality follows since∫
∇x log pd(x|xt)pd(x|xt)dx =

∫
∇xpd(x|xt)dx = ∇x

∫
pd(x|xt)dx = ∇x1 = 0. (41)

This completes the proof.

B.3 Derivation of Mixed Score Identity (MSI)

Proposition 4.3 (Mixed Score Identity). Using a Gaussian convolution k(xt|x) = N (xt|αtx, σ
2
t I) with a

variance-preserving (VP) scheme σ2
t = 1 − α2

t , and a convex combination of TSI and DSI with coefficients α2
t

and 1− α2
t , respectively, we have

∇xt
log pd(xt) =

∫
(αt(x +∇x log pd(x))− xt)pd(x|xt)dx. (42)

Proof. For a Gaussian convolution kernel k(xt|x)N (xt|αtx, σ
2
t I), DSI becomes

∇xt
log pd(xt) =

∫
∇xt

log k(xt|x)pd(x|xt)dx (43)

=

∫
∇xt

(
−∥xt − αx∥2

2σ2
t

)
pd(x|xt)dx (44)

=

∫ (
αx− xt

σ2
t

)
pd(x|xt)dx. (45)
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It then follows that

∇xt log pd(xt) =

∫ (
α2
t

∇x log pd(x)

α
+ (1− α2

t )
αtx− xt

σ2
t

)
pd(x|xt)dx (46)

=

∫
(αt(x +∇x log pd(x))− xt)pd(x|xt)dx. (47)

This completes the proof.

C Proofs Regarding Invariances and Equivariances

C.1 Proof of Proposition 6.1

We first prove Proposition 6.1 in the main text. This proposition tells us for is a G-equivalent neural sampler
which maps from latent space to sample space, if the latent space is invariant then the sample space is also
invariant. We restate the formal statement below.

Proposition 6.1. Let the neural sampler gθ : Z → X be an G-equivalent mapping. If the distribution p(Z) over
the latent space Z is G-invariant, then pθ(X) =

∫
δ(X − gθ(Z))p(Z)dZ is G-invariant.

Proof. For a transformation G3, we have

pθ(G ◦X) =

∫
δ(G ◦X − gθ(Z))p(Z)dZ (48)

=

∫
δ(X − gθ(G−1 ◦ Z))p(G−1 ◦ Z)dZ (49)

=

∫
δ(X − gθ(Z ′))p(Z ′)dZ ′ (50)

=

∫
δ(X − gθ(Z ′))p(Z ′)dZ ′ (51)

= pθ(X), (52)

where Z ′ = G−1 ◦ Z, and the penultimate line follows since the transformation in E(d) × Sn preserves the
volume.

C.2 Monte Carlo score estimators are G-equivariant

Recall that, in Section 6, we discussed that we need a G-equivariant MSI estimator for∫
(αt(X+∇ log pd(X))−Xt)pd(X|Xt)dx, and we mentioned that this holds true for a broad class of esti-

mators under mild conditions, including importance sampling and AIS estimators, with different choices of
samplers for pd(X|Xt), such as MALA and HMC. We now provide a detailed discussion below.

Before tackling the equivariance, first recall that we embed the product group in n× d into an orthogonal group
in nd-dimensional space: E(d)× Sn ↪→ O(nd) by constrain both X to be the subspace of Rn×d with zero center
of mass. Therefore, both X and Xt are zero-centered, i.e., X⊤1 = X⊤

t 1 = 0. Additionally, the score ∇ log pd(X)
is also zero-centered. The following Proposition provides a formal statement.

Proposition C.1. Let X ∈ Rn×d be a random variable representing a d-dimensional n-body system. The
gradient of a translation invariant energy function f , i.e, f(X) = f(X + 1t⊤) is (1) translation invariant; and
(2) 0-centered, i.e., ∇f(X)⊤1 = 0.

Proof. (1) We first prove that the gradient is translation invariant. Given the fact that the function is translation
invariant:

f(X) = f(X + 1t⊤), (53)

3We slightly abuse the notation by using G to represent both the set G = E(3)× Sn and its elements.
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taking gradient w.r.t. X on both sides, we have

∇Xf(X) = ∇Xf(X + 1t⊤). (54)

By chain rule, we also have

∇Xf(X + 1t⊤) = ∇X+1t⊤f(X + 1t⊤)∇X(X + 1t⊤) = ∇X+1t⊤f(X + 1t⊤). (55)

But let X ′ = X + 1t⊤, we have

∇Xf(X) = ∇X′f(X ′), (56)

which shows that the gradient of a translation invariant function is also translation invariant.

(2) Now we show that the gradient is always 0-centered. Applying first-order Taylor expansion at X0 to both
sides of f(X) = f(X + 1t⊤), we have

f(X0) + tr
(
∇f(X0)(X −X0)⊤

)
(57)

= f(X0 + 1t⊤)︸ ︷︷ ︸
=f(X0)

+tr

∇f(X0 + 1t⊤)︸ ︷︷ ︸
=∇f(X0)

(X −X0 − 1t⊤)⊤

 . (58)

Therefore, we have

tr
(
∇f(X0)(X −X0)⊤

)
= tr

(
∇f(X0 + 1t⊤)(X −X0 − 1t⊤)⊤

)
. (59)

It then follows that

tr
(
∇f(X0)t1⊤

)
= 0. (60)

By the property of the trace operator, we have

tr
(
t⊤∇f(X0)⊤1

)
= t⊤∇f(X0)⊤1 = 0. (61)

Note that the equation holds for any t. Therefore, we have

∇f(X0)⊤1 = 0. (62)

This completes the proof.

Therefore, the entire MSI: ∇Xt log pd(Xt) =
∫

(αt(X+∇X log pd(X))−Xt)pd(X|Xt)dx is (1) zero-centered
and (2) G-equivariant w.r.t Xt. We now need to prove that the aforementioned MC estimators and samplers
(IS/AIS with HMC/MALA) meet these requirements.

C.2.1 Importance Sampling

We begin with the simplest case, where we estimate
∫

(αt(X+∇ log pd(X))−Xt)pd(X|Xt)dx with Importance
Sampling (IS) with zero-centered Gaussian proposal, as employed in Akhound-Sadegh et al. (2024). Formally,
we use the IS estimator (or more precisely, self-normalized IS estimator) as follows:∫

(αt(X+∇ log pd(X))−Xt)pd(X|Xt)dx (63)

=αt

∫
(X+∇ log pd(X))pd(X)N̄ (Xt|αtX,σ2

t )∫
pd(X)N̄ (Xt|αtX,σ2

t )dx
dx−Xt (64)

=αt

∫
(X+∇ log pd(X))pd(X)N̄ (X|Xt/αt, σ

2
t /α

2
t )∫

pd(X)N̄ (X|Xt/αt, σ2
t /α

2
t )dx

dx−Xt (65)

≈αt

∑
n(X(n) +∇ log pd(X(n)))pd(X(n))∑

n pd(X(n))
−Xt, X(1:N) ∼ N̄ (X|Xt/αt, σ

2
t /α

2
t ). (66)
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Here, we slightly abuse the notation of the Gaussian distribution: the random variable and its mean are both in
matrix form, while the variance is a scalar. We use this notation to represent an isotropic Gaussian for matrices,
i.e., N (X|Y, v) = N (vec(X)|vec(Y ), vI). Unless otherwise specified, we will adhere to this notation throughout
our proof. We also use N̄ to denote Gaussian in the zero-centered subspace, i.e.,

N̄ (X|·) ∝

{
N (X|·), if X⊤1 = 0,

0, otherwise.
(67)

In other words, we draw samples from the proposal N̄ (X|Xt/αt, σ
2
t /α

2
t ), and target at pd(X)N̄ (Xt|αtX,σ2

t ).
The importance weight is given by

w(X) =
pd(X)N̄ (Xt|αtX,σ2

t )

N̄ (X|Xt/αt, σ2
t /α

2
t )
∝ pd(X). (68)

It is easy to check that this estimator is zero-centered. We now prove that this estimator is G-equivariant. Our
proof follows Akhound-Sadegh et al. (2024) closely. We mostly restate their proof here just for completeness.

Proof. Assume we apply some transformation G to Xt, the estimator becomes

αt

∑
n(G ◦X(n) +∇ log pd(G ◦X(n)))pd(G ◦X(n))∑

n pd(G ◦X(n))
−G ◦Xt, G ◦X(1:N) ∼ N̄ (G ◦Xt/αt, σ

2
t /α

2
t ) (69)

=αt

∑
n(G ◦X(n) + G ◦ ∇ log pd(X(n)))pd(G ◦X(n))∑

n pd(G ◦X(n))
−G ◦Xt (70)

=G ◦ αt

∑
n(X(n) +∇ log pd(X(n)))pd(X(n))∑

n pd(X(n))
−G ◦Xt (71)

=G ◦
(
αt

∑
n(X(n) +∇ log pd(X(n)))pd(X(n))∑

n pd(X(n))
−Xt

)
, X(1:N) ∼ N̄ (Xt/αt, σ

2
t /α

2
t ). (72)

The last line follows since G ◦X(1:N) ∼ N̄ (G ◦Xt/αt, σ
2
t /α

2
t ) is equivalent to = X(1:N) ∼ N̄ (Xt/αt, σ

2
t /α

2
t ).

C.2.2 Sampling Importance Resampling

Instead of estimating the integral by IS, we can also perform Sampling Importance Resampling (SIR) using the
importance weight. Specifically, we can draw one sample X∗ from the Categorical distribution according to the
IS weights:

X∗ = X(n∗),

where n∗ ∼ Cat

(
pd(X(1))∑
n pd(X(n))

,
pd(X(2))∑
n pd(X(n))

, · · · , pd(X(N))∑
n pd(X(n))

)
, (73)

and X(1:N) ∼ N̄ (Xt/αt, σ
2
t /α

2
t ).

The sample obtained by SIR is G-equivariant to Xt.

Proof. If we apply G to Xt, SIR becomes

X∗′ = G ◦X(n∗),

where n∗ ∼ Cat

(
pd(G ◦X(1))∑
n pd(G ◦X(n))

,
pd(G ◦X(2))∑
n pd(G ◦X(n))

, · · · , pd(G ◦X(N))∑
n pd(G ◦X(n))

)
, (74)

and G ◦X(1:N) ∼ N̄ (G ◦Xt/αt, σ
2
t /α

2
t ).
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Since the target density is G-invariant and G ◦ X(1:N) ∼ N̄ (G ◦ Xt/αt, σ
2
t /α

2
t ) is equivalent to X(1:N) ∼

N̄ (Xt/αt, σ
2
t /α

2
t ), we have

X∗′ = G ◦X(n∗),

where n∗ ∼ Cat

(
pd(X(1))∑
n pd(X(n))

,
pd(X(2))∑
n pd(X(n))

, · · · , pd(X(N))∑
n pd(X(n))

)
, (75)

and X(1:N) ∼ N̄ (Xt/αt, σ
2
t /α

2
t ).

Comparing Equations (73) and (75), we conclude X∗′ = G ◦ X∗, and hence the sample obtained by SIR is
G-equivariant to Xt.

Additionally, the score at the sample obtained by SIR is also G-equivariant to Xt.

C.2.3 Hamiltonian Monte Carlo

We now look at more complicated cases, where we run Hamiltonian Monte Carlo (HMC) or Langevin Dynamics
(LG, including ULA and MALA) to obtain samples from pd(X|Xt). We start with HMC in this section and look
at LG in the next section. Our conclusion will require the following two assumptions:

• Assumption 1: the initial guess in HMC is zero-centered and G-equivariant w.r.t. to Xt. This is a reasonable
assumption, as the initial guess can simply be a sample from N̄ (Xt/αt, σ

2
t /α

2
t ), or can be a sample from

Sampling Importance Resampling.

• Assumption 2: the momentum variable in HMC follows zero-centered and G-invariant Gaussian, which also
most holds true since the most common choice is standard or isotropic Gaussian.

Under these assumptions, the samples obtained by HMC are zero-centered and G-equivariant to Xt. In the
following, we prove that this holds for the first step. The other steps can be simply proved by viewing the sample
from the previous guess as the initial guess.

Proof. (1) Zero-centered. We first note that the gradient of log pd(X|Xt) is zero-centered if both X and Xt

are zero-centered. This is easy to check:

∇X log pd(X|Xt) = ∇X log pd(X)︸ ︷︷ ︸
zero-centered by Proposition C.1

+∇X log N̄ (Xt|X)︸ ︷︷ ︸
∝X−Xt

. (76)

We now look at the HMC transition kernel (with frog-leap):

P ∼ N̄ (0,m),

Pt/2 ← P +
t

2
∇X log pd(X|Xt)︸ ︷︷ ︸

zero-centered by Equation (76)

,

X ′ ← X + tPt/2,

P ′ ← Pt/2 +
t

2
∇X′ log pd(X ′|Xt)︸ ︷︷ ︸

zero-centered by Equation (76)

.

(77)

This proposed X ′ will be accepted according to the Metropolis-Hastings criterion:

α = min

{
1,
N̄ (P ′|0,m)pd(X ′|Xt)

N̄ (P |0,m)pd(X|Xt)

}
= min

{
1,
N̄ (P ′|0,m)pd(X ′)N̄ (Xt|X ′)

N̄ (P |0,m)pd(X)N̄ (Xt|X)

}
. (78)

Since P is zero-centered by Assumption 2, all operations will maintain the zero-centered property.
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(2) G-equivariant. It is easy to check α is G-invariant. We, therefore, only focus on proving the frog-leap
step is G-equivariance. We simplify the frog-leap steps involving X as:

X ′ ← X + tP +
t

2
∇ log pd(X|Xt), where P ∼ N̄ (0,m). (79)

Notice that, after applying G to X and hence Xt (by Assumption 1 that the initial guess of X is G-equivariant
to Xt), the frog-leap steps involving X become:

X ′′ ← G ◦X + t

G ◦ P +
t

2
∇ log pd(G ◦X|G ◦Xt)︸ ︷︷ ︸

=G◦∇ log pd(X|Xt)

 , where G ◦ P ∼ N̄ (0,m) (80)

= G ◦
(
X + tP +

t

2
∇ log pd(X|Xt)

)
,where P ∼ N̄ (G−1 ◦ 0,M) = N̄ (0,m) (81)

= G ◦X ′. (82)

This completes the proof.

C.2.4 Langevin Dynamics

We now look at LG (i.e., ULA and MALA). By the same argument as HMC, the Metropolis-Hastings acceptance
is G-invariant and will not influence our conclusions. We, therefore, simply look at a single step in ULA but
note that the same holds for MALA as well. We also take the two assumptions made in HMC with a small
modification:

• Assumption 1: the initial guess in LG is zero-centered and G-equivariant w.r.t. to Xt.

• Assumption 2: the Brownian motion we take in LG is izero-centered.

Under these assumptions, the samples obtained by LG are zero-centered and G-equivariant to Xt.

Proof. (1) Zero-centeredness. This is trivial by the LG updating formula:

X ′ ← X + γ ∇X log pd(X|Xt)︸ ︷︷ ︸
zero-centered by Equation (76)

+
√

2γE , (83)

where E is a matrix of standard Gaussian noise in the zero-centered subspace, i.e., E ∼ N̄ (0, 1).

(2) G-equivariance. Applying G to both Xt and X, and noticing that the Gaussian distribution over E is
G-invariant, we obtain the new LG updating formula:

X ′′ ← G ◦X + γ∇ log pd(G ◦X|G ◦Xt)︸ ︷︷ ︸
=G◦∇ log pd(X|Xt)

+
√

2γE , E ∼ N̄ (0, 1) (84)

= G ◦
(
X + γ∇ log pd(X|Xt) +

√
2γE

)
, E ∼ N̄ (G−1 ◦ 0, 1) = N̄ (0, 1) (85)

= G ◦X ′. (86)

This completes the proof.

C.2.5 Annealed Importance Sampling

Another possible choice for the score estimator is Annealed Importance Sampling (AIS, Neal, 2001) or AIS
followed by importance resampling. Recall that in IS, we draw samples from the proposal N̄ (X|Xt/αt, σ

2
t /α

2
t ),
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and the target as given by pd(X)N̄ (Xt|αtX,σ2
t ). For AIS, we introduce a sequence of intermediate distributions

that interpolate between the proposal and the target:

π(k)(X) ∝

N̄ (X|Xt/αt, σ
2
t /α

2
t )︸ ︷︷ ︸

proposal


1−βk

pd(X)N̄ (Xt|αtX,σ2
t )︸ ︷︷ ︸

target


βk

(87)

∝ (pd(X))
βk N̄ (Xt|αtX,σ2

t ). (88)

where β0 = 0 and βK = 1. AIS follows an iterative process: The AIS algorithm proceeds iteratively as follows:

• Draw X(0) ∼ π(0);

• For k = 1, 2, . . . ,K − 1, run a MCMC using a transition kernel T (X(k)|X(k−1)), with π(k) as the stationary
distribution, to obtain X(k).

In the end, we calculate the IS weight in the joint space defined over X(1:K−1). This will yield the AIS weight:

wAIS(X(1:K−1)) =
π(1)(X(0))

π(0)(X(0))

π(2)(X(1))

π(1)(X(1))
· · ·

π(K)(X(K−1))

π(K−1)(X(K−1))
(89)

=

K∏
k=1

(
pd(X(k−1))

)βk−βk−1 . (90)

Therefore, MSI can be estimated by∫
(αt(X+∇ log pd(X))−Xt)pd(X|Xt)dx (91)

≈αt

∑
n(X(n) +∇ log pd(X(n)))wAIS(X

(n)
(1:K−1))∑

n wAIS(X
(n)
(1:K−1))

−Xt, X
(1:N)
(1:K−1) ∼ AIS. (92)

We use superscripts to represent the sample index and subscripts to denote the intermediate step index in AIS.

Assume we use HMC or LG with the assumptions discussed in Appendices C.2.3 and C.2.4 as the transition

kernel in AIS. The sequence of samples we obtain (X
(1:N)
(1:K−1)) will be G-equivariant w.r.t. Xt. Additionally, notice

that ∇ log pd(X(n))) is G-invariance to X(n) and wAIS is G-invariance as pd is G-invariance. We can conclude
that the AIS estimator for MSI is G-equivariant w.r.t. Xt.

Following the same argument as in Appendix C.2.2, if we perform AIS followed by a resampling, the result will
also be G-equivariant w.r.t. Xt.

D Experiment Details

D.1 Mixture of 40 Gaussians (MoG-40)

We employ the mixture of 40 Gaussians (MoG-40) target distribution in 2D proposed in Midgley et al. (2023)
to visually examine the mode-covering property of different models. We train all methods for 2.5h, which allows
all of them to converge.

For our approach, we choose the total number of diffusion steps T = 30. We use a variance-preserving (VP)
scheme (Ho et al., 2020) and a linear schedule with βt ranging from 10−4 to 0.7. We choose the weighting
function to be w(t) = 1/αt. For the score network sϕ(xt), we use a 5-layer MLP with hidden dimension 400 and
SiLU activation. In each inner loop, we use Adam to train the score network sϕ(xt) for 50 iterations using DSM
with learning rate 10−4 and batch size 1, 024. For the neural sampler gθ(z), we use a 5-layer MLP with latent
dimension 2, hidden dimension 400 and SiLU activation. We use Adam to train the neural sampler gθ(z) using
MSI with learning rate 10−3, batch size 1, 024, and gradient norm clip 10.0. Regarding posterior sampling for
Equation (16), we use AIS with 10 importance samples, 15 AIS steps. For each AIS step, we use HMC transition
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kernel with 1 frog-leap step and step size 1.0. We resample one of those 10 AIS samples according to the AIS
weights and use that sample as initialization for 5 steps of MALA with step size 10−2. In the end, we estimate
the MSI using this single sample (i.e., we perform Monte Carlo estimation with one sample).

For R-KL-based approaches, we align their experiment setups with that for our approach. Specifically, we use a
5-layer MLP with hidden dimension 400 and SiLU activation for the score network sϕ(xt). In each inner loop,
we use Adam to train the score network sϕ(xt) for 50 iterations using DSM with learning rate 10−4 and batch
size 1, 024. For the neural sampler gθ(z), we use a 5-layer MLP with latent dimension 2, hidden dimension 400
and SiLU activation. We use Adam to train the neural sampler gθ(z) with learning rate 10−3, batch size 1, 024,
and gradient norm clip 10.0.

For FAB (Midgley et al., 2023) and iDEM (Akhound-Sadegh et al., 2024), we use exactly the same setups as
described in the respective papers. Note that both of them use replay buffers. In addition, all methods except
iDEM work under the original scale [−50, 50] of the target. iDEM normalizes the target to the range [−1, 1],
which may simplify the task.

D.2 Many-Well-32 (MW-32, Internal Coordinate)

We employ the Many-Well target distribution in 32D proposed in Midgley et al. (2023) to examine the mode-
covering property of different models, as this target contains 232 modes. We train all models until convergence.
Training and sampling time for each model can be found in Table 3 in the main text.

For our approach, we choose the total number of diffusion steps T = 30. We use a variance-preserving (VP)
scheme (Ho et al., 2020) and a linear schedule with βt ranging from 10−4 to 0.15. We choose the weighting
function to be w(t) = 1/αt. For the score network sϕ(xt), we use a 5-layer MLP with hidden dimension 400 and
SiLU activation. In each inner loop, we use Adam to train the score network sϕ(xt) for 50 iterations using DSM
with learning rate 10−4 and batch size 1, 024. For the neural sampler gθ(z), we use a 5-layer MLP with latent
dimension 32, hidden dimension 400 and SiLU activation. We use Adam to train the neural sampler gθ(z) using
MSI with learning rate 10−3, batch size 1, 024, and gradient norm clip 10.0. Regarding posterior sampling for
Equation (16), we use AIS with 10 importance samples, 15 AIS steps. For each AIS step, we use HMC transition
kernel with 1 frog-leap step and step size 0.3. We resample one of those 10 AIS samples according to the AIS
weights and use that sample as initialization for 5 steps of MALA with step size 5×10−2. In the end, we estimate
the MSI using this single sample.

For R-KL-based approaches, we align their experiment setups with that for our approach. Specifically, we use a
5-layer MLP with hidden dimension 400 and SiLU activation for the score network sϕ(xt). In each inner loop,
we use Adam to train the score network sϕ(xt) for 50 iterations using DSM with learning rate 10−4 and batch
size 1, 024. For the neural sampler gθ(z), we use a 5-layer MLP with latent dimension 32, hidden dimension 400
and SiLU activation. We use Adam to train the neural sampler gθ(z) with learning rate 10−3, batch size 1, 024,
and gradient norm clip 10.0.

For FAB, we use exactly the same setup as described in Midgley et al. (2023). For iDEM, we use the same setup
as that for experiments in internal coordinates as described in (Akhound-Sadegh et al., 2024). Note that both
of them use replay buffers.

D.3 Double-Well-4 (DW-4, Cartesian Coordinate)

We employ the Double-Well target with 4 particles in 2D. This target was originally introduced by Köhler et al.
(2020) and also used in Midgley et al. (2024); Akhound-Sadegh et al. (2024) to evaluate model performance on
invariant targets. We train all models until convergence. Training and sampling time for each model can be
found in Table 3 in the main text.

For our approach, we choose the total number of diffusion steps T = 30. We use a variance-preserving (VP)
scheme (Ho et al., 2020) and a linear schedule with βt ranging from 10−6 to 0.05. We found that using a
constant weighting function, w(t) = 1, is beneficial for handling these complex targets. We use EGNN following
Hoogeboom et al. (2022) for both the score network sϕ and the neural sampler gθ. The neural sampler has
8 layers with a hidden dimension of 144 and ReLU activation. The score network has 4 layers with the same
width, and it is additionally conditioned on t. We use Adam to train the score network sϕ for 100 iterations
using DSM with learning rate 10−4 and batch size 512. We use Adam to train the neural sampler gθ(z) using
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MSI with learning rate 5 × 10−4, batch size 512, and gradient norm clip 10.0. Regarding posterior sampling
for Equation (16), we use AIS with 20 importance samples, 10 AIS steps. For each AIS step, we use 1-step
MALA transition kernel with step size 0.01. We resample one of those 20 AIS samples according to the AIS
weights and use that sample as initialization for 50 steps of MALA. We dynamically adjust the MALA step size
to maintain an acceptance rate between 0.5 and 0.6. Specifically, we increase the step size by a factor of 1.5
when the acceptance rate exceeds 0.6 and decrease it by a factor of 1.5 when the acceptance rate drops below
0.5. In the end, we estimate the MSI using this single sample.

Additionally, we employ early stopping during training. Specifically, we generate 2,000 samples using the neural
sampler, which serve as the predictions. These samples are then used as the initialization for 50 MALA steps,
targeting the target energy. The 2,000 samples obtained after MALA are treated as the validation set. We
evaluate the energy of both the predictions and the validation set, then calculate the total variation (TV)
distances between their energy histograms. We save the model with the lowest TVD. This criterion can be
interpreted as asking: how much improvement can be achieved by applying a small number of Langevin dynamics
to the model samples? The less improvement we can achieve, the better the model is.

For FAB (Midgley et al., 2023) and iDEM (Akhound-Sadegh et al., 2024), we use exactly the same setups as
described in the respective papers. Note that both of them use replay buffers.

D.4 Lennard-Johns-13 (LJ-13, Cartesian Coordinate)

We employ the Lennard-Jones target with 13 particles in 3D, as introduced by Köhler et al. (2020) and later
used in Midgley et al. (2024); Akhound-Sadegh et al. (2024) to assess model performance on invariant targets.
This target is more complex than DW-4 in the sense that its energy landscape includes prohibitive regions that
can destabilize training. However, DW-4 poses its own challenges, as it has two modes, and balancing these
modes can be more difficult than handling the Lennard-Jones target. We therefore evaluate our approach and
baselines on both to evaluate its behavior comprehensively. We train all models until convergence. Training and
sampling time for each model can be found in Table 3 in the main text.

For our approach, we choose the total number of diffusion steps T = 30. We use a variance-preserving (VP)
scheme (Ho et al., 2020) and a linear schedule with βt ranging from 10−6 to 0.05. We also use a constant
weighting function, w(t) = 1. We use the same EGNN architecture as in DW for both the score network sϕ
and the neural sampler gθ. Both networks share the same 8-layer architecture with a hidden dimension of 144
and ReLU activation. We use Adam to train the score network sϕ for 100 iterations using DSM with learning
rate 10−4 and batch size 128. We use Adam to train the neural sampler gθ using MSI with learning rate 10−4,
batch size 128, and gradient norm clip 10.0. Regarding posterior sampling for Equation (16), we use IS with 500
importance samples. We then resample one of those 20 AIS samples according to the AIS weights and use that
sample as initialization for 1,000 steps of MALA. We also dynamically adjust the MALA step size to maintain an
acceptance rate between 0.5 and 0.6. Specifically, we increase the step size by a factor of 1.5 when the acceptance
rate exceeds 0.6 and decrease it by a factor of 1.5 when the acceptance rate drops below 0.5. Unlike previous
tasks, we found that using only the last sample from MALA sometimes leads to suboptimal performance. To
improve stability, we track the samples and their gradients from the last 500 steps of MALA, and estimate the
MSI using these 500 samples. It’s important to note that since the samples and their scores are already computed
during MALA, using more samples in the Monte Carlo estimator does not incur any additional computational
cost. We found smoothing the LJ target following Moore et al. (2024) can help to stabilize the training. However,
our approach works well even without this smoothing. Additionally, we employ early stopping in the same way
as in DW-4.

For FAB (Midgley et al., 2023) and iDEM (Akhound-Sadegh et al., 2024), we use exactly the same setups as
described in the respective papers. Note that both of them use replay buffers.

D.5 Summary and Guidance for Hyperparameter Tuning in DiKL

Below, we summarize some key hyperparameters for our method:

(1) βt should not be too large, as this can lead to inaccurate posterior sampling and worse performance. The
neural sampling tends to favor the mean of the global mass, which can be seen in Figure 2 in the main text: as
the noise level increases, the model is biased towards the mean.
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(2) For DW and LJ tasks, it is important to use a large EGNN as the neural sampler. Unlike diffusion models
with EGNNs (Akhound-Sadegh et al., 2024; Hoogeboom et al., 2022), our approach involves learning a one-step
sampling generator, requiring greater model capacity. We tested smaller networks, such as an EGNN with 6
layers and 128 hidden dimensions. However, these yielded worse performance compared to the larger architecture
used in our experiments. On the other hand, the score network does not need to have the same capacity. For
example, for DW4, we found a shallower one that suffices for optimal performance. Additionally, interestingly,
we found using ReLU yields better performance than SiLU in EGNNs.

(3) The weight function w(t) also requires careful consideration. While other weighting functions commonly
used in diffusion models include σ2

t /αt or σ2
t /α

2
t , we found using 1/αt or uniform weighting is more stable in

our approach. An empirical guideline for choosing between these is as follows: for more complex targets like
DW and LJ, a uniform weighting function can better at encouraging exploitation. On the other hand, for highly
multi-modal targets, using 1/αt can accelerate exploration.

On the other hand, perhaps surprisingly, it is not crucial to have a perfect posterior sampler. Our method
essentially works in a bootstrapping manner: the posterior samples improve the model, and a better model in
turn brings the posterior samples closer to the true target. Having said that, accurate posterior sampling may
improve the convergence rate of the model.

E Limitations and Future Work

Although our method achieves comparable or even better performance than SOTA flow-based and diffusion-based
samplers with faster training and sampling speed, it has a few limitations which we discussion below.

Model density. The density pθ(x) of our neural sampler is intractable since we have a latent variable model with
a nonlinear and non-invertible generator gθ(z). Compared to FAB, although we have a more flexible generator,
we cannot use importance re-weighting to correct the potential bias of generated samples since we do not have
access to the density of our samples.

Model flexibility. Although our one-step generator gθ(z) has significantly faster sampling speed than diffusion-
based samplers, it has limited model flexibility compared to multi-step diffusion models such as iDEM. It is
therefore more difficult for our model to handle energy functions with a large Lipschitz constant.

Training stability. For the two n-body system targets in the Cartesian coordinate (i.e., DW-4 and LJ-13),
training can be unstable near convergence. We employed some criterion on the energies of model samples to
perform early stopping. For future work, it might be beneficial to employ a replay buffer similar to the one used
in FAB or iDEM to balance exploration and exploitation and stabilize training.

F Assets and Licenses

We use the following codebases for baselines and benchmarks in our experiments:

• FAB (MIT license): PyTorch implementation for MoG-40 and MW-32 (https://github.com/
lollcat/fab-torch) ; JAX implementation for DW-4 and LJ-13 (https://github.com/lollcat/
se3-augmented-coupling-flows).

• iDEM (MIT license): PyTorch implementation for all experiments (https://github.com/jarridrb/DEM).

• DW-4 and LJ-13 target energy functions (MIT license): bgflow (https://github.com/noegroup/bgflow).

https://github.com/lollcat/fab-torch
https://github.com/lollcat/fab-torch
https://github.com/lollcat/se3-augmented-coupling-flows
https://github.com/lollcat/se3-augmented-coupling-flows
https://github.com/jarridrb/DEM
https://github.com/noegroup/bgflow
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