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Figure 1. Images generated by DIFFRATIO on ImageNet 512×512 with a single step (FID=1.41).

Abstract
Score-based distillation methods (e.g., variational
score distillation) train one-step diffusion models
by first pre-training a teacher score model and
then distilling it into a one-step student model.
However, the gradient estimator in the distillation
stage usually suffers from two sources of bias:
(1) biased teacher supervision due to score esti-
mation error incurred during pre-training, and (2)
the student model’s score estimation error dur-
ing distillation. These biases can degrade the
quality of the resulting one-step diffusion model.
To address this, we propose DIFFRATIO, a new
framework for training one-step diffusion mod-
els: instead of estimating the teacher and student
scores independently and then taking their differ-
ence, we directly estimate the score difference
as the gradient of a learned log density ratio be-
tween the student and data distributions across
diffusion time steps. This approach greatly sim-
plifies the training pipeline, significantly reduces
gradient estimation bias, and improves one-step
generation quality. Additionally, it also reduces
auxiliary network size by using a lightweight
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density-ratio network instead of two full score net-
works, which improves computational and mem-
ory efficiency. DiffRatio achieves competitive
one-step generation results on CIFAR-10 and Im-
ageNet (64×64 and 512×512), outperforming
most teacher-supervised distillation approaches.

1. Introduction
Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song & Ermon, 2019) have achieved remarkable suc-
cess in modeling complex real-world data across a wide
range of domains, including image synthesis (Rombach
et al., 2022; Li et al., 2022), 3D generation (Poole et al.,
2022), video synthesis (Ho et al., 2022), and audio genera-
tion (Liu et al., 2023). Typically, diffusion models consist of
two processes: a forward noising process, which gradually
perturbs data into a known noise prior (typically Gaussian),
and a reverse denoising process, which learns to invert the
forward corruption process to generate realistic data samples
from noise. Formally, the forward process is defined over T
time steps as a Markov chain of Gaussian transitions, while
the reverse process is parameterized by neural networks that
predict the denoising distribution given the noisy samples.

In classic diffusion models with Gaussian denoising dis-
tributions, generating high-quality data samples typically
requires hundreds or thousands of sampling steps, result-
ing in significant sampling inefficiency due to the need for
T ≫ 1 NFEs (number of function evaluations) (Ho et al.,
2020; Nichol & Dhariwal, 2021). To address this weak-
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ness, various acceleration methods have been proposed to
reduce NFEs during sampling. One class of such approaches
leverages advanced numerical solvers for differential equa-
tions, enabling continuous-time approximations of the dif-
fusion process (Song et al., 2020; Liu et al., 2022; Lu et al.,
2022). Another line of work improves the flexibility of
the posterior distribution in the denoising process, either
by estimating a more accurate covariance for the Gaussian
distribution (Nichol & Dhariwal, 2021; Bao et al., 2022b;a;
Ou et al., 2025) or by adopting flexible non-Gaussian de-
noising distributions (Bortoli et al., 2025; Xiao et al., 2021;
Yu et al., 2024). While these techniques can dramatically
reduce NFEs from ∼ 103 to around 10–20, they still fall
short of achieving high-quality generation within 5 steps.

Recently, distillation-based methods have emerged as a pow-
erful direction for training diffusion models, enabling high-
quality one-step generation (Zhou et al., 2024). These meth-
ods fall into two categories. Trajectory-based distillation
methods (Salimans & Ho, 2022; Berthelot et al., 2023; Song
et al., 2023; Heek et al., 2024; Kim et al., 2024; Frans et al.,
2024; Li & He, 2024; Geng et al., 2025a; Boffi et al., 2025)
aim to approximate the full sampling trajectory by training
a student model to amortize multiple intermediate steps.
These methods are motivated by accelerated solvers and
typically perform joint training of the full diffusion model
and the distillation process. Score-based distillation ap-
proaches (Luo et al., 2024; Yin et al., 2024; Salimans et al.,
2024; Xie et al., 2024; Zhou et al., 2024) distill the full
denoising process of the pre-trained teacher diffusion model
into a one-step latent variable model. This distillation pro-
cess typically involves minimizing the divergence between
the student and teacher models based on their respective
score estimations (Poole et al., 2022; Wang et al., 2024).

Score-based distillation methods typically follow a two-
stage pipeline: (1) pre-training stage: training a teacher
score model via denoising score matching on the data dis-
tribution, and (2) distillation stage: using the pre-trained
teacher score to supervise the training of a one-step student
model. However, the distillation-stage gradient estimator
suffers from two sources of bias: (1) imperfect teacher score
supervision due to score estimation error from pre-training,
and (2) student score estimation error during distillation.
These biases can accumulate and thus significantly degrade
the quality of the resulting one-step model.

This paper proposes DIFFRATIO, a new framework for
training one-step diffusion models by directly estimating the
score difference between the student and data distributions
via the gradient of a learned log density ratio. This approach
eliminates the need for separate student score estimation
and reduces gradient estimation bias. Moreover, it uses a
lightweight time-conditioned density-ratio network (i.e., a
density-ratio estimator) instead of two full score networks,

which improves computational and memory efficiency and
achieves SOTA one-step image generation performance.

2. Background on Diffusion Models
Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song & Ermon, 2019) define a generative framework
that maps a Gaussian prior p(xT ) to the data distribution
p(x0) through a forward noising process and a learned re-
verse denoising process. The forward process progressively
adds Gaussian noise to the data

q(x0:T ) = pd(x0)

T∏
t=1

q(xt|xt−1), (1)

with transition kernels defined as

q(xt|xt−1) = N (xt|
√

1− βt xt−1, βtI), (2)

where βt ∈ (0, 1) is a pre-specified variance. The skip
conditional distribution at time t can be written as:

q(xt|x0) = N (xt|
√
ᾱtx0, (1− ᾱt)I), (3)

where ᾱt =
∏t
s=1(1 − βs). As T → ∞, the final

state xT approximates a standard normal distribution, i.e.,
q(xT ) → N (0, I). The generative process aims to reverse
this trajectory. Starting from noise xT ∼ p(xT ) = N (0, I),
the model learns a reverse process to sequentially denoise
and reconstruct data samples. Since the true reverse con-
ditional q(xt−1|xt) is intractable, a common method is to
approximate it with a variational Gaussian distribution:

pθ(xt−1|xt) = N (xt−1|µt−1(xt; θ),Σt−1(xt; θ)), (4)

where the mean function is learned from data and the co-
variance function can be either learned (Nichol & Dhariwal,
2021; Ou et al., 2025; Bao et al., 2022a) or chosen to be a
fixed value (Bao et al., 2022b; Ho et al., 2020).

From a score-based perspective, the denoising mean
µt−1(xt; θ) can be written in terms of the (time-dependent)
score of the forward marginal q(xt), i.e., ∇xt

log q(xt). In
practice, we learn score networks using denoising score
matching (DSM) (Vincent, 2011; Song & Ermon, 2019).
Specifically, for any distribution q(x0) and its noised
marginal q(xt) =

∫
q(xt|x0) q(x0) dx0, DSM trains a score

network sθ(xt, t) to estimate ∇xt
log q(xt) by minimizing

Eq(x0) q(xt|x0)

[
∥sθ(xt, t)−∇xt

log q(xt|x0)∥22
]
. (5)

Given an estimated score sθ(xt, t) ≈ ∇xt log q(xt),
Tweedie’s Lemma (Efron, 2011; Robbins, 1992) yields the
corresponding reverse mean:

µt−1(xt; θ) =
1√

1− βt
(xt + βt sθ(xt, t)) , (6)
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Algorithm 1 Score-based distillation for training one-step diffusion models with teacher supervision (VSD)

Require: Training samples {x(1), . . . , x(N)} ∼ pd(x0)
// Stage 1: Pre-train a teacher score model (requires training data)

1: Pre-train the teacher model’s score network spdψ1
(xt, t) using DSM (Eq. 12) until convergence

// Stage 2: Distill a one-step student model with teacher supervision
2: Initialize the one-step generator with the teacher’s score network gθinit(·) ≡ spdψ1

(·, t = tinit)
3: for each training iteration do
4: Estimate the student model’s score by training a score network sqθψ2

(xt, t) using DSM
5: Update the one-step generator gθ with sqθψ2

(xt, t) (student score) and spdψ1
(xt, t) (teacher supervison) using Eq. 14

6: end for

which establishes a connection between the denoising dis-
tributional perspective and the score estimation perspective
of diffusion models. In the following section, we intro-
duce score-based distillation methods through the lens of
divergence minimization.

2.1. Score-Based Diffusion Distillation

Score-based distillation methods aim to distill a teacher dif-
fusion model pθ (pre-trained on the true data distribution
pd(x0)) into a one-step implicit generative model (Goodfel-
low et al., 2014; Huszár, 2017; Zhang et al., 2020):

qθ(x0) =

∫
δ(x0 − gθ(z))p(z)dz, (7)

where δ(·) is the Dirac delta function, p(z) is a standard
Gaussian prior for the latent variable z, and gθ : Z → X is
a deterministic neural network that generates data x from
the latent variable z in one step. We want to minimize the
divergence between this one-step model and the true data
distribution. However, when the function gθ(·) is not bijec-
tive, the model distribution qθ is not absolutely continuous
w.r.t. the Lebesgue measure. As a result, the corresponding
density function may not be well-defined, and consequently,
the commonly used f -divergence such as KL divergence
between qθ(x0) and the data distribution pd(x0) may also
be ill-defined (Arjovsky et al., 2017; Zhang et al., 2020).

Inspired by diffusion models, one can use a set of (scaled)
Gaussian convolution kernels K = {k1, · · · , kT } with
kt(xt|x0) = N (xt|αtx0, σ2

t I) to define the Diffusive KL
divergence (DiKL) between the model density qθ(x0) and
target distribution pd(x0):

DiKLK(qθ||pd) ≡
T∑
t=1

w(t)KL(qθ(xt)||pd(xt)), (8)

where w(t) is a positive scalar weighting function that sums
to one, and qθ(xt) and pd(xt) are noisy model density and

noisy target density, respectively, defined by

qθ(xt) =

∫
k(xt|x0)qθ(x0)dx0, (9)

pd(xt) =

∫
k(xt|x0)pd(x0)dx0. (10)

In this case, the distributions qθ(xt) and pd(xt) are always
absolutely continuous, and thus the KL divergence between
them is always well-defined. For a single Gaussian kernel,
the divergence was known as Spread KL divergence (Zhang
et al., 2020; 2019). It is straightforward to show that it is a
valid divergence, i.e., DiKLK(qθ||pd) = 0 ⇔ qθ = pd; see
Zhang et al. (2020) for a proof. In addition to the diffusion
distillation (Luo et al., 2024; Xie et al., 2024; Wang et al.,
2025), this divergence has successfully been used in 3D
generative models (Poole et al., 2022; Wang et al., 2024)
and training neural samplers (He et al., 2024).

For a single kernel kt, the DiKL term admits the following
pathwise gradient (see Appendix A for a derivation):

∇θDiKLt(qθ(x0)||pd(x0)) (11)

=

∫
qθ(xt)

(
∇xt log qθ(xt)−∇xt log pd(xt)︸ ︷︷ ︸

score difference at time t

)∂xt
∂θ

dxt.

However, neither the noisy model score ∇xt
log qθ(xt) nor

the noisy target score ∇xt log pd(xt) are directly accessible.
In the distillation setting, the noisy target score is provided
by a pre-trained diffusion model. Specifically, a score net-
work spdψ1

(xt, t) is learned to approximate ∇xt
log pd(xt)

by minimizing the DSM loss w.r.t. ψ1 at time t:

Epd(x0)k(xt|x0)

[
∥spdψ1

(xt, t)−∇xt
log k(xt|x0)∥22

]
. (12)

Regarding the noisy model score ∇xt
log qθ(xt), since sam-

ples from qθ can be efficiently obtained, we can approx-
imate the score with another score network sqθψ2

(xt, t) ≈
∇xt

log qθ(xt) by minimizing the DSM loss w.r.t. ψ2:

Eqθ(x0)k(xt|x0)

[
∥sqθψ2

(xt, t)−∇xt
log k(xt|x0)∥22

]
. (13)
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Thus, the gradient of DiKL w.r.t. the parameters θ of the
student model can be estimated as follows, a method known
as Variational Score Distillation (VSD) (Poole et al., 2022;
Wang et al., 2024; Luo et al., 2024):

∇θDiKL(qθ(x0)||pd(x0)) (14)

≈
T∑
t=1

w(t)

∫
qθ(xt)

(
sqθψ2

(xt, t)− spdψ1
(xt, t)

)∂xt
∂θ

dxt.

Unlike the teacher score function which remains fixed af-
ter pre-training, the noisy model score ∇xt

log qθ(xt) dy-
namically changes as we update the student model’s pa-
rameters θ during training. Therefore, the score network
sqθψ2

(xt, t) ≈ ∇xt
log qθ(xt) needs to be updated every time

we update the student model, which results in an interleaved
training procedure as detailed in Algorithm 1.

Limitations of the VSD. Despite the initial success of VSD
in diffusion distillation, this two-stage pipeline has inher-
ent limitations. In the first stage, the teacher score model
spdψ1

(xt, t) is imperfect due to limited network capacity and
optimization. In the second stage, the distillation process
solely relies on the pre-trained teacher score for supervision.
Therefore, the gradient estimation in VSD (Eq. 14) has bi-
ases from two sources: (1) the teacher’s score estimation
error and (2) the student’s score estimation error. These
biases can accumulate and thus adversely affect the quality
of the distilled student model.

In the next section, we propose a new method that directly es-
timates the score difference ∇xt

log qθ(xt)−∇xt
log pd(xt)

with a single lightweight network, which reduces the gradi-
ent estimation bias and improves generation quality.

3. DiffRatio: Training One-Step Diffusion
Models Without Teacher Supervision

From Algorithm 1, we observe that the DiKL gradient de-
pends on the difference between two score functions, which
can be expressed as the gradient of a log density ratio:

∇xt
log qθ(xt)−∇xt

log pd(xt) = ∇xt
log

qθ(xt)

pd(xt)
. (15)

Therefore, instead of estimating the two score functions
separately, we can directly learn the density ratio qθ(xt)

pd(xt)
and

then take the gradient of its logarithm to estimate the score
difference. We thus refer to this approach as DIFFRATIO,
which we introduce below.

3.1. Diffusive Density Ratio Gradient Estimation

We use class ratio estimation (Sugiyama et al., 2012; Qin,
1998; Gutmann & Hyvärinen, 2010; Zhang et al., 2022) to
estimate the density ratio across all noise levels. We first

denote distributions qθ(xt) and pd(xt) as two conditional
distributions m(xt|y = 0) and m(xt|y = 1), respectively,
where y = 0 indicates samples from the one-step model
qθ(xt) and y = 1 indicates data samples from pd(xt). With
Bayes’ rule, we can transform the density ratio estimation
problem into a binary classification problem:

qθ(xt)

pd(xt)
≡ m(xt|y = 0)

m(xt|y = 1)
=
p(y = 0|xt)���m(xt)/����p(y = 0)

p(y = 1|xt)���m(xt)/����p(y = 1)

=
p(y = 0|xt)
p(y = 1|xt)

, (16)

where the mixture distribution is defined as m(x) ≡
m(xt|y = 1)p(y = 1) + m(xt|y = 0)p(y = 0), and the
Bernoulli prior distribution p(y) is simply set as a uniform
prior p(y = 1) = p(y = 0) = 0.5. In practice, this is
achieved by drawing a batch of data from pd(xt) with the
label y = 1 and drawing an equal number of samples from
qθ(xt) with the label y = 0. We then train a neural network
classifier cη(xt, t), conditioned on the diffusion time t, to
estimate the probability that a given input xt belongs to
class y = 1. The optimal classifier approximates the poste-
rior probability c∗(xt, t) = p(y = 1|xt). In this case, the
log-density ratio can be written as

∇xt log
qθ(xt)

pd(xt)
= ∇xt log

1− c∗(xt, t)

c∗(xt, t)

= ∇xt
logit(1− c∗(xt, t)). (17)

We can then obtain a new gradient estimator for DiKL by
plugging in our density-ratio estimator to Eq. 11:

∇θDiKL(qθ(x0)||pd(x0)) (18)

≈
T∑
t=1

w(t)

∫
qθ(xt)∇xt

logit(1− cη(xt, t))
∂xt
∂θ

dxt.

Importantly, our method directly estimates the score differ-
ence ∇xt

log qθ(xt)−∇xt
log pd(xt) using a single density-

ratio estimator cη(xt, t), which alleviates the two sources of
bias in VSD (Eq. 14): (1) Instead of separately estimating
the student score sqθψ2

(xt, t) and the teacher score spdψ1
(xt, t),

the density-ratio estimator directly estimates the score differ-
ence in an integrated manner, avoiding the accumulation of
errors from two independently trained networks. (2) With-
out relying on the pre-trained teacher score for supervision,
we avoid bias propagation from the teacher to the student,
leading to a consistent estimator—given sufficient capacity
and training, the estimated score difference converges to the
true score difference. In contrast, VSD cannot guarantee
such consistency, as the bias from teacher supervision can-
not be removed regardless of how well the student score
network is trained. In the next section, we give an empirical
comparison of the gradient estimation bias between VSD
and DiffRatio methods.
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Table 1. Evaluation of trained generators on the 2D toy problem.
Log-MMD (↓): lower is better. Log-density (↑): higher is better.

METHOD Log-MMD (↓) Log-density (↑)

True / −6.65
VSD −5.25 −10.88
DiffRatio −6.08 −6.79

3.2. Empirical Analysis of the Gradient Bias

To empirically validate that our density-ratio-based gradi-
ent estimator reduces bias compared to VSD, we design
a controlled 2D experiment where ground-truth score dif-
ferences can be computed. The data distribution pd(x0) is
a 2D mixture of Gaussians with 40 components, which
allows closed-form computation of the true data score
∇xt log pd(xt) at any noise level. The one-step model
qθ(x0) is an implicit generative model that has been pre-
trained to approximate pd. Since qθ(xt) lacks a closed-
form density, we estimate its score using kernel density
estimation (KDE) with 10,000 samples, which provides
highly accurate score estimates in this low-dimensional
setting. This gives us the ground-truth score difference:
∆s∗t ≡ ∆s∗(xt, t) = ∇xt

log qθ(xt)−∇xt
log pd(xt).

We compare the following two methods on this problem.

1. DiffRatio (ours), which trains a single classifier
cη(xt, t) and estimates the score difference as ∆̂st =
∇xt logit(1− cη(xt, t)).

2. VSD, which trains two separate score networks spdψ1

and sqθψ2
using DSM and computes their difference

∆̂st = sqθψ2
(xt, t)− spdψ1

(xt, t).

We evaluate using two metrics: (1) the relative L2 error
∥∆̂st − ∆s∗t ∥2/∥∆s∗t ∥2, and (2) cosine similarity, where
∆̂st denotes the estimated score difference from each
method. We train both methods with 5,000 steps; other
details can be found in Appendix D. As shown in Figure 2,
our density-ratio-based method consistently achieves lower
L2 error and higher cosine similarity than VSD across all
noise levels, indicating more accurate gradient estimation.
This is because VSD accumulates errors from both the stu-
dent score network sqθψ2

and the teacher score network spdψ1
.

In contrast, our method directly estimates the score differ-
ence using a single density-ratio estimator cη , avoiding error
accumulation from separately trained networks. This empir-
ically validates that density-ratio estimation provides more
accurate gradient signals for training one-step models.

To further illustrate the effect of gradient bias to generation
quality, we compare the two gradient estimation methods by
training one-step models under the same divergence (DiKL)

Figure 2. Score difference estimation accuracy on a 2D mixture
of Gaussians problem. Our density-ratio-based method achieves
lower L2 error (left) and higher cosine similarity (right) with the
ground-truth score difference than VSD, which suffers from accu-
mulated errors in separate teacher and student score estimation.

on this problem. We report log-MMD (maximum mean
discrepancy) and log-density under the true data distribution
in Table 1. Our method achieves significantly better log-
density than VSD, indicating that the generated samples are
closer to the true data distribution. The improved gradient
estimation translates directly to better generation quality.

3.3. Training Criterion Extensions

In addition to the DiKL, we can use the learned classifier
function cη to obtain a family of gradient estimators for alter-
native training objectives. For instance, replacing the logit
function with the logarithm function yields an objective that
minimizes the probability of generated samples being classi-
fied as fake. This formulation aligns with GAN (Goodfellow
et al., 2014; Nowozin et al., 2016) across different diffusion
time steps, which approximately minimizes the Diffusive
Jensen-Shannon (DiJS) divergence (a detailed derivation of
DiJS and its gradient estimator can be found in Appendix B):

∇θDiJS(qθ(x0)||pd(x0)) (19)

≈
T∑
t=1

w(t)

∫
qθ(xt)∇xt

log(1− cη(xt, t))
∂xt
∂θ

dxt.

Alternatively, rather than minimizing the probability of the
generated images being fake as used in GAN, one can also
maximize the probability of them being real. This approach
is referred to as Diffusive Realism Maximization (DiRM),
which has the following gradient estimator:

∇θDiRM(θ) (20)

≈ −
T∑
t=1

w(t)

∫
qθ(xt)∇xt log cη(xt, t)

∂xt
∂θ

dxt.

Notably, the DiRM objective—maximizing the likelihood
of being real—also mirrors the non-saturating GAN formu-
lation (Goodfellow et al., 2014), which is known to provide
more stable gradients for the generator compared to the
original minimax objective.

In principle, once the density ratio is available, any ratio-
based divergence (e.g., an f -divergence) can be used for
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Algorithm 2 Training one-step diffusion models via diffusive density ratio estimation (DiffRatio, ours)

Require: Training samples {x(1), . . . , x(N)} ∼ pd(x0)
// Stage 1: Pre-train the score model

1: Pre-train the score network spdθ (xt, t) using DSM (Eq. 12) until convergence
// Stage 2: Train the one-step model without teacher supervision

2: Fix the diffusion time argument t = tinit in the score network to create a one-step generator gθ(·) ≡ spdθ (·, t = tinit)
3: for each training iteration do
4: Sample time t′ for diffusive density ratio estimation
5: Train a classifier cη(xt′ , t′) on samples from qθ(xt′) and pd(xt′) to estimate the density ratio qθ(xt′)/pd(xt′)
6: Update the one-step generator gθ with cη(xt′ , t′) using Eq. 18 or Eq. 19 or Eq. 20
7: end for

training. This flexibility is not available when one only has
access to the teacher and student scores (as in VSD), making
DiffRatio applicable to a broader family of criteria. More-
over, we provide a convergence discussion in Appendix C,
where we justify the consistency of our DiffRatio gradient
estimators under weaker assumptions than those required
for standard ratio estimation (Hyvärinen, 2005).

3.4. Simplified Training with Improved Efficiency

The overall training procedure of our proposed DiffRatio
framework is summarized in Algorithm 2. In our method,
the generator is first pre-trained as a score network using
DSM, and then further trained as a one-step model with
the diffusion time argument in the score network fixed to
t=tinit. This design leads to a more efficient training pipeline
compared to VSD. Specifically, VSD requires maintaining
and evaluating three networks during training: (1) the pre-
trained teacher score network spdψ1

, (2) the student score
network sqθψ2

, and (3) the generator gθ. In contrast, our
method only requires two: (1) the generator gθ, and (2) the
density-ratio estimator cη, which is approximately half the
size of a full score network. This results in significant
computational and memory savings during training.

For low-dimensional problems such as the 2D mixture of
Gaussians in Section 3.2, the generator can be trained from
random initialization. However, for high-dimensional image
generation, we find that pre-training the generator with DSM
is necessary to prevent mode collapse, which is consistent
with findings in the score-based distillation literature (Luo
et al., 2024; Zhou et al., 2025b; 2024). To further under-
stand the necessity of this pre-training, we provide a detailed
analysis in Appendix F, which studies the role of weight
initialization from two perspectives: (1) the functional map-
ping perspective, and (2) the feature space perspective. Our
analysis shows that multi-level features learned during diffu-
sion pre-training are essential for preventing mode collapse
in high-dimensional settings.

4. Related Work
4.1. Comparison with GANs

Estimating density ratios is central to many GAN vari-
ants (Goodfellow et al., 2014; Nowozin et al., 2016). In
classic GANs, the discriminator implicitly estimates the
density ratio between real and model distributions. How-
ever, for high-dimensional image modeling tasks, both data
and model distributions are supported on low-dimensional
manifolds and are therefore not absolutely continuous, ren-
dering their densities and the density ratio ill-defined. This
further causes the Jensen-Shannon (JS) divergence to be
ill-defined and contributes to GAN training instability (Ar-
jovsky & Bottou, 2017; Arjovsky et al., 2017; Mescheder
et al., 2018; Roth et al., 2017).

Alternative Divergence. To address this, Arjovsky et al.
(2017) proposed to replace the JS divergence with the
Wasserstein-1 distance, which can yield meaningful gra-
dients even when the distributions are disjoint. However,
training Wasserstein GANs requires enforcing a 1-Lipschitz
constraint on the critic, which is challenging in practice
and has been approximated using heuristics such as weight
clipping (Arjovsky et al., 2017), gradient penalties (Gulra-
jani et al., 2017), and spectral normalization (Miyato et al.,
2018). Despite its theoretical appeal, the divergence min-
imized in practice often differs from the idealized objec-
tive (Mescheder et al., 2018), and that stable GAN training
relies more on regularization (e.g., gradient penalties) than
on strict divergence minimization (Fedus et al., 2017).

Noise as Regularization. Adding Gaussian noise to real
and fake samples has been proposed as a way to ensure
distributions are fully supported, making the density ra-
tio well-defined (Sønderby et al., 2016; Roth et al., 2017;
Nowozin et al., 2016; Zhang et al., 2020). This model-
agnostic approach requires no architectural changes but
hinges on choosing an effective noise level—something
hard to fix throughout training.
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(a) CIFAR-10 32×32 (FID=2.39, IS=9.93) (b) ImageNet 64×64 (FID=1.54)

Figure 3. Images generated by DiffRatio-DiJS on CIFAR-10 and ImageNet 64×64. Each image is generated with a single NFE.

4.2. Comparison with Diffusion GAN

Diffusion GAN (Wang et al., 2023) addresses the challenge
of selecting a fixed noise level by introducing a diffusion-
inspired noise schedule that gradually increases noise in
tandem with the model’s learning capacity. While this rep-
resents the most closely related work to ours, our approach
differs in several important aspects, as outlined below.

Agnostic to Generator Architecture. Diffusion GAN sta-
bilizes training using a StyleGAN-based generator (Karras
et al., 2024), which is implicitly trained progressively from
low to high resolutions while keeping the network topology
fixed. In contrast, our method does not rely on a specialized
generator architecture or progressive resolution training. In-
stead, we adopt a generic U-Net architecture, resulting in a
simpler and more broadly applicable framework.

No Additional Regularization Techniques. We do not
use common GAN-specific training tricks such as gradient
penalties or spectral normalization. Our method provides a
clean framework for training one-step diffusion models yet
still achieves stable convergence, demonstrating robustness
without any additional regularization tricks during training.

Avoiding Adversarial Nature. Unlike traditional GANs,
our framework is no longer adversarial in the strict sense:
our generator’s performance is not dependent on the con-
vergence of a discriminator, which simplifies the training
process and mitigates common issues arising from adver-
sarial dynamics (e.g., GANs require a careful balancing
between discriminator and generator training).

As our method does not rely on network architectures, gradi-
ent penalties, or adversarial training, we are estimating and
minimizing the actual DiJS divergence—a divergence that
remains well-defined. This leads to a conceptually cleaner
training objective that is more amenable to theoretical anal-
ysis and empirical diagnosis, as it avoids the complexities

Table 2. Unconditional one-step generation on CIFAR-10.

METHOD NFE (↓) FID (↓) IS (↑)
Teacher model

EDM (Karras et al., 2022) 35 2.04 9.84
EDM (Karras et al., 2022) 1 8.70 8.49
Training from scratch without teacher

CT (Song et al., 2023) 1 8.70 8.49
iCT (Song & Dhariwal, 2024) 1 2.83 9.54
iCT-deep (Song & Dhariwal, 2024) 1 2.51 9.76
BCM (Li & He, 2024) 1 3.10 9.45
BCM-deep (Li & He, 2024) 1 2.64 9.67
sCT (Lu & Song, 2025) 1 2.85 -
Diffusion-GAN (Wang et al., 2023) 1 3.19 -
IMM (Zhou et al., 2025a) 1 3.20 -
MeanFlow (Geng et al., 2025a) 1 2.92 -
Distillation with teacher supervision

Progressive Distillation (Salimans & Ho, 2022) 1 8.34 8.69
DSNO (Zheng et al., 2023) 1 3.78 -
TRACT (Berthelot et al., 2023) 1 3.78 -
CD (Song et al., 2023) 1 3.55 9.48
CTM (w/ GAN) (Kim et al., 2024) 1 1.98 -
CTM (w/o GAN) (Kim et al., 2024) 1 >5.0 -
sCD (Lu & Song, 2025) 1 3.66 -
Diff-Instruct (Luo et al., 2024) 1 4.53 -
ECT (Geng et al., 2025b) 1 3.60 -
SiD (Zhou et al., 2024) 1 2.03 10.02
SiDA (Zhou et al., 2025b) 1 1.52 10.32
Training without teacher supervision

DiffRatio-DiRM (ours) 1 4.87 9.85
DiffRatio-DiKL (ours) 1 3.81 9.90
DiffRatio-DiJS (ours) 1 2.39 9.93

and instabilities associated with adversarial min-max opti-
mization and additional regularization tricks.

5. Image Generation Experiments
We evaluate the performance of our proposed method by
training one-step image diffusion models on two stan-
dard benchmarks: (1) unconditional generation on the
CIFAR-10 (32×32) dataset (Krizhevsky, 2009), (2) class-
label-conditioned generation on the ImageNet (64×64 and
512×512) dataset (Deng et al., 2009).
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Figure 4. Images generated by DiffRatio-DiJS-M on ImageNet 512×512 (FID=1.41). Each image is generated with 1 step (1 NFE).

Table 3. Conditional one-step generation on ImageNet 64×64.

METHOD NFE (↓) FID (↓)
Teacher model

EDM (Karras et al., 2022) 79 2.44
Training from scratch without teacher

EDM2-L/XL (Karras et al., 2024) 1 13.0
CT (Song et al., 2023) 1 13.0
iCT (Song & Dhariwal, 2024) 1 4.02
iCT-deep (Song & Dhariwal, 2024) 1 3.25
BCM (Li & He, 2024) 1 4.18
BCM-deep (Li & He, 2024) 1 3.14
sCT (Lu & Song, 2025) 1 2.04
Distillation with teacher supervision

Progressive Distillation (Salimans & Ho, 2022) 1 7.88
DSNO (Zheng et al., 2023) 1 7.83
TRACT (Berthelot et al., 2023) 1 7.43
CD (Song et al., 2023) 1 6.20
CTM (w/ GAN) (Kim et al., 2024) 1 1.92
sCD (Lu & Song, 2025) 1 2.44
Diff-Instruct (Luo et al., 2024) 1 5.57
EM Distillation (Xie et al., 2024) 1 2.20
ECT (Geng et al., 2025b) 1 2.49
SiD (Zhou et al., 2024) 1 2.02
SiDA (Zhou et al., 2025b) 1 1.35
DMD2 (w/ GAN) (Yin et al., 2024) 1 1.51
DMD2 (w/ GAN & longer training) (Yin et al., 2024) 1 1.28
Training without teacher supervision

DiffRatio-DiJS (ours) 1 1.54

Our one-step diffusion model adopts the same neural net-
work architecture as the pre-trained score model. Specifi-
cally, we employ the EDM U-Net model architecture (Kar-
ras et al., 2022) for CIFAR-10 and ImageNet 64×64, and
use the EDM2-M U-Net model architecture (Karras et al.,
2024) for ImageNet 512×512. We consider three training
criteria in our framework (DiKL/DiJS/DiRM) on CIFAR-
10, and use the best-performing criterion (DiJS) for higher-
dimensional ImageNet experiments (64×64 and 512×512).
We use the variance-exploding (VE) noise schedule to de-
fine the diffusive divergences with tmax=1000. Our density-

Table 4. Conditional one-step generation on ImageNet 512×512.

METHOD CFG NFE (↓) FID (↓)
Teacher model

EDM2-M (Karras et al., 2024) N 63 2.25
EDM2-M (Karras et al., 2024) Y 126 2.01
Training from scratch without teacher

sCT-M (Lu & Song, 2025) Y 1 5.84
sCD-M (Lu & Song, 2025) Y 1 2.75
Distillation with teacher supervision

SiD-M (Zhou et al., 2024) N 1 2.06
SiDA-M (Zhou et al., 2025b) N 1 1.55
Training without teacher supervision

DiffRatio-DiJS-M (ours) N 1 1.41

ratio estimator cη(xt, t) is implemented using the encoder
portion of the teacher’s U-Net architecture with a sigmoid
function attached to the end to produce a scalar output be-
tween 0 and 1. This network is approximately half the size
of the full U-Net used for score estimation, leading to im-
proved computational and memory efficiency. The one-step
generator gθ(z) is initialized using the weights from the
pre-trained score model with the diffusion time argument
tinit=2.5 fixed throughout training and sampling. We fol-
low standard hyperparameter settings for training generative
models on CIFAR-10 and ImageNet as detailed in Karras
et al. (2022; 2024). We use a batch size of 64 for CIFAR-10
and 4,096 for ImageNet. The weighting function w(t)=σ2

t

is used for for both datasets. We adopt a single-step update
strategy for the density-ratio estimator throughout our ex-
periments, consistent with previous works (Luo et al., 2024;
Zhou et al., 2024). See Appendix E for more details.

In Tables 2, 3 and 4, we compare our method to previ-
ous methods for training one-step generative models. To
highlight methodological differences, we categorize these
approaches into three groups: (1) training from scratch, (2)
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training with teacher supervision (e.g., using teacher score,
denoiser or ODE trajectory as supervision in the distilla-
tion loss), and (3) training without teacher supervision. We
find that our proposed method, DiffRatio, achieves competi-
tive one-step generation performance despite not using any
teacher supervision, outperforming most state-of-the-art dis-
tillation methods that rely on full teacher supervision. The
only baseline method with comparable performance to ours
is SiDA (Zhou et al., 2025b), which depends on training
data, teacher score supervision, teacher weight initialization,
and student score estimation. In contrast, our method re-
quires only training data, teacher weight initialization, and
density-ratio estimation. Notably, this eliminates the need
for teacher supervision in the training process. Also, density-
ratio estimation is both simpler and more lightweight than
student score estimation, as the density-ratio network is ap-
proximately half the size of a full score network. Moreover,
unlike VSD, our approach does not require maintaining or
evaluating the teacher score network during the training
process. This results in a more streamlined and efficient
training framework, since our approach does not require
maintaining and evaluating the teacher and student score
networks in the training procedure. Samples generated by
DiffRatio-DiJS are visualized in Figures 3, 4, 6, 7 and 8.

6. Conclusions
In this paper, we introduced DIFFRATIO, a new framework
for training one-step diffusion models by directly estimat-
ing the score difference between the one-step model and
the true data distribution across diffusion time steps with a
lightweight density-ratio network. Our approach mitigates
the gradient-estimation bias caused by separately learning
teacher and student scores in score-based distillation. Our
method achieved competitive generation quality on image
synthesis benchmarks with improved efficiency, outperform-
ing most approaches with full teacher supervision.
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A. Diffusive Kullback–Leibler (DiKL) Divergence
A.1. Validity of DiKL Divergence

We follow the derivation from Spread Divergence (Zhang et al., 2020) and provide a simple proof of the validity of the
diffusive KL (DiKL) divergence. See Zhang et al. (2020) for a generalized proof that includes cases with non-absolutely
continuous distributions and non-Gaussian kernels.

Recall that DiKL is defined as

DiKLK(qθ(x0)||pd(x0)) =
T∑
t=1

w(t)KL(qθ(xt)||pd(xt)), (21)

where w(t) > 0, and the noisy model density qθ(xt) and noisy data density pd(xt) are respectively defined as:

qθ(xt) =

∫
kt(xt|x0)qθ(x0)dx0, (22)

pd(xt) =

∫
kt(xt|x0)pd(x0)dx0, (23)

with kt(xt|x0) denoting the Gaussian transition kernel. We will show that

DiKLK(qθ(x0)||pd(x0)) = 0 ⇐⇒ qθ(x0) = pd(x0). (24)

Since w(t) > 0 and the KL divergence is non-negative, it suffices to show that:

KL(qθ(xt)||pd(xt)) = 0 ⇐⇒ qθ(x0) = pd(x0). (25)

First, by definition of KL divergence, we have

KL(qθ(xt)||pd(xt)) = 0 ⇐⇒ qθ(xt) = pd(xt). (26)

Now, assume that kt(ϵ) = N (0, σ2I), and rewrite the noisy densities as convolutions:

qθ(xt) = (qθ ∗ kt)(xt), (27)
pd(xt) = (pd ∗ kt)(xt). (28)

Suppose qθ(xt) = pd(xt). Applying the Fourier transform F , we obtain:

F(qθ ∗ kt) = F(qθ) · F(kt), (29)
F(pd ∗ kt) = F(pd) · F(kt). (30)

Since the characteristic function of Gaussian F(kt) > 0, we have:

qθ(xt) = pd(xt) ⇐⇒ F(qθ) ·���F(kt) = F(pd) ·���F(kt) ⇐⇒ F(qθ) = F(pd) ⇐⇒ qθ(x0) = pd(x0). (31)

This competes the proof.

A.2. Derivation of the Density-Ratio Gradient Estimator for DiKL Divergence

Without loss of generality, we first consider DiKL with a single kernel kt. We will first follow He et al. (2024) and show that
the gradient of DiKL w.r.t. the model parameter θ is given by

∇θDiKLkt(qθ||pd) =
∫
qθ(xt) (∇xt log qθ(xt)−∇xt log pd(xt))

∂xt
∂θ

dxt. (32)

Recall that the DiKL divergence for a single kernel kt is defined as

DiKLkt(qθ||pd) =
∫

(log qθ(xt)− log pd(xt)) qθ(xt)dxt. (33)
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We first reparameterize xt as a function of z and ϵ:

xt = αtgθ(z) + σtϵt ≡ hθ(z, ϵt), (34)

where z ∼ p(z) ≡ N (z|0, I) and ϵt ∼ p(ϵt) ≡ N (ϵt|0, I). It then follows that

∇θDiKLkt(qθ(x0)||pd(x0)) = ∇θ

∫
(log qθ(xt)− log pd(xt)) qθ(xt)dxt (35)

= ∇θ

∫∫∫
(log qθ(xt)− log pd(xt)) δ(xt − hθ(z, ϵt))p(z)p(ϵt)dxtdzdϵ (36)

= ∇θ

∫∫
(log qθ(xt)− log pd(xt)) |xt=hθ(z,ϵt)p(z)p(ϵt)dzdϵ (37)

=

∫ (
∇θ log qθ(xt) +∇xt log qθ(xt)

∂xt
∂θ

−∇xt log pd(xt)
∂xt
∂θ

)
qθ(xt)dxt (38)

=

∫ (
∇xt

log qθ(xt)
∂xt
∂θ

−∇xt
log pd(xt)

∂xt
∂θ

)
qθ(xt)dxt, (39)

where the last line follows since∫
∇θ log qθ(xt)qθ(xt)dxt =

∫
∇θ qθ(xt)dxt = ∇θ

∫
qθ(xt)dxt = ∇θ1 = 0. (40)

For a set of kernels K = {k1, · · · , kT }, it then follows that

∇θDiKLK(qθ||pd) =
T∑
t=1

w(t)

∫
qθ(xt) (∇xt

log qθ(xt)−∇xt
log pd(xt))

∂xt
∂θ

dxt (41)

=

T∑
t=1

w(t)

∫
qθ(xt)

(
∇xt

log
qθ(xt)

pd(xt)

)
∂xt
∂θ

dxt (42)

=

T∑
t=1

w(t)

∫
qθ(xt)∇xt logit(1− c∗(xt, t))

∂xt
∂θ

dxt, (43)

where the last line follows by Eq. 17. This completes the proof.

B. Diffusive Jensen-Shannon (DiJS) Divergence
B.1. Validity of DiJS Divergence

We follow a similar derivation for the validity of DiKL in Appendix A.1. Recall that DiJS is defined as

DiJSK(qθ(x0)||pd(x0)) =
T∑
t=1

w(t) JS(qθ(xt)||pd(xt)), (44)

where w(t) > 0, and the noisy model density qθ(xt) and noisy data density pd(xt) are respectively defined as:

qθ(xt) =

∫
kt(xt|x0)qθ(x0)dx0, (45)

pd(xt) =

∫
kt(xt|x0)pd(x0)dx0, (46)

with kt(xt|x0) denoting the Gaussian transition kernel. We will show that

DiJSK(qθ(x0)||pd(x0)) = 0 ⇐⇒ qθ(x0) = pd(x0). (47)

Since w(t) > 0 and the JS divergence is non-negative, it suffices to show that:

JS(qθ(xt)||pd(xt)) = 0 ⇐⇒ qθ(x0) = pd(x0). (48)
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First, by definition of JS divergence, we have

JS(qθ(xt)||pd(xt)) = 0 ⇐⇒ qθ(xt) = pd(xt). (49)

Now, assume that kt(ϵ) = N (0, σ2I), and rewrite the noisy densities as convolutions:

qθ(xt) = (qθ ∗ kt)(xt), (50)
pd(xt) = (pd ∗ kt)(xt). (51)

Suppose qθ(xt) = pd(xt). Applying the Fourier transform F , we obtain:

F(qθ ∗ kt) = F(qθ) · F(kt), (52)
F(pd ∗ kt) = F(pd) · F(kt). (53)

Since the characteristic function of Gaussian F(kt) > 0, we have:

qθ(xt) = pd(xt) ⇐⇒ F(qθ) ·���F(kt) = F(pd) ·���F(kt) ⇐⇒ F(qθ) = F(pd) ⇐⇒ qθ(x0) = pd(x0). (54)

This competes the proof.

B.2. Derivation of the Density-Ratio Gradient Estimator for DiJS Divergence

Recall that the Jensen–Shannon (JS) divergence between two densities q and p is

JS(q ∥ p) = 1

2
KL

(
q
∥∥∥ q + p

2

)
+

1

2
KL

(
p
∥∥∥ q + p

2

)
. (55)

Define the mixture density at diffusion time t as

m(xt) ≡
qθ(xt) + pd(xt)

2
. (56)

We first consider a single diffusion kernel kt and then extend the result to the weighted multi-kernel setting.

Density-ratio identity via an optimal classifier. Following the GAN view (Goodfellow et al., 2014), consider a time-
conditional binary classification problem between data and model samples at diffusion time t, where y = 1 ∼ pd(xt) and
y = 0 ∼ qθ(xt), let the Bayes-optimal classifier be c∗(xt, t) ≡ p(y = 1 | xt, t). Then

c∗(xt, t) =
pd(xt)

pd(xt) + qθ(xt)
, 1− c∗(xt, t) =

qθ(xt)

pd(xt) + qθ(xt)
. (57)

Consequently, the density ratio appearing in KL(qθ∥m) can be written as

qθ(xt)

m(xt)
=

qθ(xt)
1
2 (pd(xt) + qθ(xt))

= 2
qθ(xt)

pd(xt) + qθ(xt)
= 2

(
1− c∗(xt, t)

)
. (58)

Gradient of the DiJS objective under the GAN approximation. Consider the first JS term:

1

2
KL(qθ(xt) ∥m(xt)) =

1

2

∫
qθ(xt) log

(
qθ(xt)

m(xt)

)
dxt. (59)

Under the standard GAN approximation, we treat the density-ratio estimate (equivalently the optimal classifier) as fixed
when differentiating w.r.t. θ, i.e., we detach m(xt).1 Using the same reparameterization argument as in Appendix A.2, we
obtain

∇θ
1

2
KL(qθ(xt) ∥m(xt)) ≈

1

2

∫
qθ(xt)∇xt log

(
qθ(xt)

m(xt)

)
∂xt
∂θ

dxt. (60)

1This is justified by the envelope theorem (Milgrom & Segal, 2002) for the inner maximization over the classifier parameters, and
corresponds to a two-timescale training regime where the classifier tracks its optimum for the current θ. See also Theorem 2.4 in (Arjovsky
& Bottou, 2017) for a discussion of vanishing gradients in the GAN setting.
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Substituting (58) and dropping the constant log 2 (whose gradient w.r.t. xt is zero), this becomes

∇θ
1

2
KL(qθ(xt) ∥m(xt)) ≈

1

2

∫
qθ(xt)∇xt log

(
1− c∗(xt, t)

) ∂xt
∂θ

dxt. (61)

For the second JS term, 1
2KL(pd∥m), the data density pd does not depend on θ, and under the same detach-m approximation

its contribution to ∇θ is ignored. Therefore, the resulting gradient estimator is given by (61).

C. Discussion on the Consistency of the Diffusive Density-Ratio Estimator
Appendices A and B establish that DiKL and DiJS are valid divergences, i.e., DiKLK(qθ∥pd) = 0 or DiJSK(qθ∥pd) = 0
implies qθ(x0) = pd(x0). Therefore, if the score difference term used in our gradient estimators is computed exactly
(equivalently, if the underlying density ratio is estimated consistently), driving the corresponding diffusive divergence to
zero yields convergence of the model distribution to the data distribution.

It remains to justify consistency of the density-ratio (class-ratio) estimator. We estimate qθ(xt)
pd(xt)

via a time-conditional binary
logistic regression classifier (equivalently, noise-contrastive estimation). Consistency of this maximum-likelihood estimator
follows from Theorem 2 of Gutmann & Hyvärinen (2010) under conditions (a)–(c) therein.

Theorem C.1 (Consistency of the diffusive density-ratio estimator). Fix any noise level t > 0. Let p1(xt) = pd(xt) and
p0(xt) = qθ(xt), and let cη(xt, t) be a well-specified time-conditional logistic classifier trained by maximum likelihood to
distinguish samples from p1 versus p0 with nonzero class priors. Under standard regularity conditions (uniform convergence
of the empirical objective and a full-rank information matrix; see Theorem 2 of Gutmann & Hyvärinen (2010)), the MLE η̂
is consistent and the implied log-density-ratio estimate

̂
log

qθ(xt)

pd(xt)
= log

1− cη̂(xt, t)

cη̂(xt, t)

converges (in probability) to the true log qθ(xt)
pd(xt)

. Consequently, ∇xt log
qθ(xt)
pd(xt)

is consistently estimated by ∇xt log
1−cη̂(xt,t)
cη̂(xt,t)

,
yielding a consistent estimate of the score difference ∇xt

log qθ(xt)−∇xt
log pd(xt).

Condition (a) (support overlap) requires that pn(u) > 0 whenever pd(u) > 0 (equivalently, supp(pd) ⊆ supp(pn)). This
is the main subtlety for implicit one-step generators, where qθ(x0) may not share support with pd(x0). In our setting, we
estimate the ratio in the noised space: for any t > 0, both qθ(xt) and pd(xt) are obtained by convolving the respective
x0-distributions with a Gaussian kernel, and hence are absolutely continuous with overlapping support on xt. Thus, condition
(a) is automatically satisfied for the diffused distributions, and our method is consistent under weaker conditions than
requiring support overlap at t = 0. Excluding t = 0 in the DiKL/DiJS definition ensures that ratio estimation is always
performed in this well-supported noisy space, enabling convergence under weaker conditions even when qθ(x0) and pd(x0)
do not share support.

D. Detailed Setup of Toy Experiment
This section provides the detailed experimental setup for the gradient bias study in Section 3.2.

Data Distribution. The data distribution pd(x0) is a mixture of Gaussians with 40 components in 2D. Component means
are sampled uniformly in [−40, 40]2 and variances are sampled log-uniformly, providing a multi-modal distribution with
varying local densities. This setup allows closed-form computation of the true score ∇xt log pd(xt) at any noise level t.

One-Step Diffusion Model. The one-step diffusion model qθ(x0) is an implicit generative model parameterized by a 4-layer
MLP with hidden dimension 400 and SiLU activations, conditioned on the noise level t. The model has been pre-trained to
approximate pd. Since qθ lacks a closed-form density, we estimate its score using kernel density estimation (KDE) with
10,000 generated samples and bandwidth selected via Scott’s rule. This provides the ground-truth score difference:

∆s∗t ≡ ∆s∗(xt, t) = ∇xt
log qθ(xt)−∇xt

log pd(xt). (62)

Methods Compared:
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1. DiffRatio (ours): A time-conditioned classifier cη(xt, t) is trained to distinguish between samples from qθ(xt) and
pd(xt). The classifier is a 4-layer MLP with hidden dimension 400 and SiLU activations, taking concatenated (xt, t) as
input and outputting a scalar logit. The score difference is obtained via Eq. 17: ∆̂st = ∇xt logit(1− cη(xt, t)).

2. VSD: Two separate score networks sqθψ2
(xt, t) and spdψ1

(xt, t) are trained independently using DSM (Eqs. 12 and 13),

and the score difference is computed as their difference ∆̂st = sqθψ2
(xt, t)− spdψ1

(xt, t). Both networks use the same
architecture as the classifier.

Training Details. All networks are trained for 10,000 iterations with batch size 1024 using Adam optimizer with learning
rate 10−4. Noise levels are sampled from a power schedule t ∼ tmin + u1.5 · (tmax − tmin) where u ∼ U(0, 1), tmin = 0.1,
and tmax = 20.0. The classifier is trained with binary cross-entropy loss using softplus for numerical stability.

Evaluation. We evaluate each method by comparing estimated score differences against the KDE-based ground truth at 10
logarithmically-spaced noise levels in [0.1, 20]. At each noise level, we sample 1,000 evaluation points from the noised
student distribution. We report the cosine similarity ⟨∆̂st,∆s∗t ⟩/(∥∆̂st∥∥∆s∗t ∥), measuring directional alignment of the
gradient estimates.

E. Detailed Setup of Image Generation Experiments
This section provides the detailed experimental setup for the image generation experiments in Section 5.

We evaluate the performance of our proposed method by training one-step image diffusion models on two standard
benchmarks: (1) unconditional generation on the CIFAR-10 (32×32) dataset (Krizhevsky, 2009), (2) class-label-conditioned
generation on the ImageNet (64×64 and 512×512) dataset (Deng et al., 2009).

Our one-step diffusion model adopts the same neural network architecture as the pre-trained score model. Our implementation
builds upon the EDM and EDM2 codebases (Karras et al., 2022; 2024). Specifically, we employ the EDM U-Net model
architecture (Karras et al., 2022) for CIFAR-10 and ImageNet 64×64, and use the EDM2-M U-Net model architecture
(Karras et al., 2024) for ImageNet 512×512. We use the EDM preconditioning for the inputs. We choose not to use the
EDM output preconditioning as we are training a one-step generator which outputs images that differ significantly from the
input noise.

Our density-ratio estimator cη(xt, t) is implemented using the encoder portion of the teacher’s U-Net architecture with a
sigmoid function attached to the end to produce a scalar output between 0 and 1. This network is approximately half the
size of the full U-Net used for score estimation, leading to improved computational and memory efficiency. The one-step
generator gθ(z) is initialized using the weights from the pre-trained score model with the diffusion time argument tinit=2.5
fixed throughout training and sampling.

We consider three training criteria in our framework (DiKL/DiJS/DiRM) on CIFAR-10, and use the best-performing criterion
(DiJS) for higher-dimensional ImageNet experiments (64×64 and 512×512). We use the variance-exploding (VE) noise
schedule to define the diffusive divergences with tmax=1000. We follow standard hyperparameter settings for training
generative models on CIFAR-10 and ImageNet as detailed in Karras et al. (2022; 2024). We use a batch size of 64 for
CIFAR-10 and 4,096 for ImageNet. The weighting function w(t)=σ2

t is used for for both datasets. For CIFAR-10 and
ImageNet 64×64, we use a fixed learning rate of 5 × 10−5 for both generator and density-ratio network. For ImageNet
512×512, we use a fixed learning rate of 10−4 for the density-ratio network; for the generator we use a learning rate of 10−4

at the beginning and reduce the learning rate by a factor of 10 when the FID does not improve for 500 ticks. We adopt a
single-step update strategy for the density-ratio estimator throughout our experiments, consistent with previous works (Luo
et al., 2024; Zhou et al., 2024). All experiments are conducted on 8 NVIDIA H100 80GB GPUs.

F. Analysis of the Role of Weight Initialization in Training One-Step Diffusion Models
Our one-step diffusion model was initialized with the pre-trained score model’s weights. We observed that training from
random initialization led to mode collapse; see Figure 5c for an example of mode collapse. One possible explanation is that
mode collapse arises from the training objectives (i.e., reverse KL or JS divergence), a phenomenon also observed in GAN
literature (Goodfellow et al., 2014). To understand why initializing the one-step model with the pre-trained score model’s
weights prevents mode collapse in the training process, we investigate the following two hypotheses.
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(a) Single-level DSM Init. (b) Multi-level DSM Init. (c) Collapsed Samples

Figure 5. Visualization of different initializations and collapsed samples on CIFAR-10.

Function Space Hypothesis. Teacher weight initialization provides a more structured latent-to-output functional mapping,
i.e., different locations in the latent space are initially mapped to distinct images, preventing mode collapse.

This hypothesis originally arose from visualizing initialized samples as shown in Figure 5a, showing that initialization
already induces diverse mappings, with the one-step model training stage primarily refining these initializations into sharper
images. Somewhat surprisingly, however, we find that functional initialization alone is insufficient to prevent mode collapse.
To show this, instead of training the teacher model across different diffusion time steps t and selecting a single time step
tinit for initialization, we only pre-train the teacher model at the selected time step tinit and use its weight to initialize the
one-step model. This setup ensures identical latent-to-output mappings for the one-step model at initialization as shown in
Figure 5b. However, with this initialization, the one-step model still exhibits mode collapse early in the one-step model
training stage, which suggests that the functional mapping perspective alone does not fully explain the mode-collapse issue.

Feature Space Hypothesis. Teacher weight initialization provides a rich set of multi-level features learned when pre-training
the teacher diffusion model, which help prevent mode collapse.

To verify this hypothesis and isolate the role of learned features from functional mapping effects, we pre-train the teacher
model on CIFAR-100 while excluding all classes that overlap with CIFAR-10. This ensures that images from the target
classes that the one-step model aims to generate are absent during pre-training, allowing us to focus solely on the contribution
of the learned features. We train the teacher model using increasingly larger subsets of CIFAR-100 with (10, 50, 90) classes,
creating a setting with increasing feature diversity. Table 5 shows the performance of our one-step model on CIFAR-10
initialized with the weights of teacher models trained on varying numbers of CIFAR-100 classes. We find that when the
teacher model is trained on only 10 classes, mode collapse still occurs. However, as the number of training classes increases,
the one-step model no longer collapses, indicating that feature richness plays a crucial role in preventing mode collapse.
Nevertheless, despite mitigating mode collapse, this initialization strategy achieves an FID of 6.01 when the teacher model is
pre-trained on all 90 non-overlapping classes in CIFAR-100, which is significantly worse than the FID (2.39) obtained when
directly using CIFAR-10 as the pre-training dataset. This suggests that while feature richness is essential for stabilizing
training, functional mapping initialization remains important for achieving higher sample quality.

Table 5. Performance of one-step models trained by DiJS with different initializations on various CIFAR subsets.

Initialization method Initialization dataset FID

No initialization - collapsed

Single-level DSM full CIFAR-10 collapsed

Multi-level DSM

10 classes in CIFAR-100 collapsed
50 classes in CIFAR-100 6.20
90 classes in CIFAR-100 6.01
full CIFAR-10 2.39
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G. Additional Image Generation Results

Figure 6. Visualization of samples from DiffRatio-DiJS trained on CIFAR10 (FID=2.39, IS=9.93).
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Figure 7. Visualization of samples from DiffRatio-DiJS trained on ImageNet 64×64 (FID=1.54).
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Figure 8. Visualization of samples from DiffRatio-DiJS-M trained on ImageNet 512×512 (FID=1.41).
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