Bridging Deep Learning and Probabilistic
Inference: Towards Data Efficiency,
Identifiability, and Sampling Scalability

bk "<i>:; lllﬁ

** ‘!

Wenlin Chen

Department of Engineering

University of Cambridge

This dissertation is submitted for the degree of
Doctor of Philosophy

St Edmund’s College April 2025

Declaration

This thesis is the result of my own work and includes nothing which is the outcome of work
done in collaboration except as declared in the preface and specified in the text. It is not
substantially the same as any work that has already been submitted, or, is being concurrently
submitted, for any degree, diploma or other qualification at the University of Cambridge or
any other University or similar institution except as declared in the preface and specified in the

text. It does not exceed the prescribed word limit for the relevant Degree Committee.

Wenlin Chen
April 2025

Abstract

While deep learning has achieved remarkable performance in modelling complex patterns
in structured data, a key challenge is its reliance on large datasets. In contrast, probabilistic
inference excels in data-scarce settings but suffers from computational inefficiencies for high
dimensional data and struggles to model structured data where representation learning is crucial.
This thesis focuses on the synergies between deep learning and probabilistic inference, bridging
these gaps from two complementary perspectives, which results in novel machine learning
methods with improved data efficiency, identifiability, and sampling scalability. In the first
part of this thesis, we investigate how probabilistic inference can enhance deep learning. We
first introduce a data-efficient meta-learning framework, which combines Gaussian processes
and deep neural networks to improve representation learning on related low-data tasks. By
formulating this problem in a novel bilevel optimisation framework and solving it with the
implicit function theorem, this approach enhances the generalisation capabilities of deep
neural networks for few-shot molecular property prediction and optimisation tasks. Next, we
analyse the theoretical properties of neural network representations learned across multiple
tasks within a probabilistic framework, establishing conditions under which neural networks
can recover canonical feature representations that reflect the underlying ground-truth data
generating process. Our framework not only ensures linear identifiability in the general multi-
task regression setting, but also offers a simple probabilistic inference approach to recovering
point-wise identifiable feature representations under certain assumptions of task structures,
resulting in stronger theoretical guarantees and empirical performance of identifiability than
previous methods on real-world molecular data. In the second part of this thesis, we explore the
other direction in their reciprocal relationship: utilising deep learning to improve probabilistic
inference. Inspired by diffusion-based modelling techniques, we propose a novel approach
for training deep generative models to emulate sampling-based probabilistic inference for
unnormalised probability distributions. This enables efficient sampling from multi-modal
probability distributions such as Boltzmann distributions for many-body particle systems. Our
approach outperforms previous neural samplers while achieving faster training and inference
speed. Together, this thesis demonstrates how deep learning and probabilistic inference can be

integrated in a mutually reinforcing manner to enhance each other.

Acknowledgements

First and foremost, I would like to thank my supervisor, Prof José Miguel Herndndez-Lobato,
for his unwavering support throughout my PhD. I am grateful for the freedom and encourage-
ment that Miguel gave me to pursue my own ideas and explore different research directions.
His critical feedback always challenged me to think deeper and helped me grow as a better
researcher. I also want to thank my supervisor, Prof Bernhard Scholkopf, for his insightful
comments on my work and for generously providing access to substantial GPU resources
during my final year, which allowed me to freely explore interesting and ambitious ideas. I
also appreciate the countless intriguing discussions that I had with my advisor, Dr Hong Ge,

who taught me how to think outside the box when approaching research problems.

I am fortunate to have been part of the Computational and Biological Learning Lab at Uni-
versity of Cambridge and the Department of Empirical Inference at Max Planck Institute for
Intelligent Systems, as they provide a truly wonderful and supportive environment for my PhD
journey. I would like to thank the great collaborators I had the pleasure of working with during
my PhD, from whom I learned a great deal: Austin Tripp, Mingtian Zhang, Jiajun He, Wen
Wu, Wenlong Chen, Julien Horwood, Juyeon Heo, Zijing Ou, Yingzhen Li, RuiKang OuYang,
and Severi Rissanen. I also want to extend my sincere thanks to Gregor Simm and Lixin Sun

for offering an incredible internship experience at Microsoft Research.

I am grateful to everyone I met during my PhD who shared interesting conversations: Zongyu
Guo, Rui Xia, Kaiqu Liang, Yanzhi Chen, Andy Lin, Isaac Reid, David Burt, Ross Clarke,
Stratis Markou, Max Patacchiola, Vincent Dutordoir, James Allingham, Andrew Foong,
Javier Antoran, Greg Flamich, Runa Eschenhagen, Bruno Mlodozeniec, Tor Fjelde, Adrian
Goldwaser, Ross Viljoen, Yongchao Huang, Xianrui Zheng, Sukriti Singh, Laurence Midgley,
Richard Turner, Zhenzhong Xiao, Annalena Kofler, Anson Lei, Weiyang Liu, Le Chen, Zeju
Qiu, Siyuan Guo, Wendong Liang, Hsiao-Ru Pan, Gege Gao, Yamei Chen, Yaxi Hu, Florent
Draye, Andreas Opedal, Andi Zhang, Zonghao Chen, Yu Xie, and many others. I also want to

express my heartfelt thanks to Lexie for all the laughter and joy we have shared together.

Last but not least, I would like to express my deepest gratitude to my parents for their
unconditional support throughout this journey.

Table of Contents

List of Figures

List of Tables

Nomenclature

1

2

Introduction

1.1 Motivation e

1.2 Thesis Outline and Contributions v ...
1.3 Listof Publications e
Background

2.1 Probabilistic Inferenceo Lo oL
2.1.1 ExactInference
2.1.2 Sampling-Based Inference
22 DeepLlearning
2.2.1 DeepNeural Networks
2.2.2 Supervised Representation Learning
2.3 Probabilistic Deep Learning L oL
2.3.1 Bayesian Neural Networks
2.3.2 Deep Generative Models
2.4 Molecular Representations for Machine Learning
2.4.1 Molecular Property Prediction
2.4.2 Molecular Configuration Sampling

xiii

xvii

Xix

Meta-Learning Gaussian Processes for Data-Efficient Representation Learning 31

3.1 Motivation and OVerview o o e e
3.2 Preliminaries
32.1 Few-ShotLearning

32

Table of Contents

33

34

3.5

3.6

3.2.2 Deep Kernel Gaussian Processes 34
Adaptive Deep Kernel Fitting with Implicit Function Theorem 35
3.3.1 The ADKF-IFT Framework for Training Deep Kernel GPs 35
3.3.2 Efficient Meta-Training Algorithm 36
3.3.3 ADKEF-IFT as a Unification of Previous Methods 38
3.3.4 Highlighted ADKF-IFT Instantiation 38
Related Work L 41
34.1 DeepKernel GPs o 41
342 Meta-Learning 42
343 Multi-Task GPs L 43
3.4.4 Implicit Function Theorem in Machine Learning 43
Empirical Evaluation L L 43
3.5.1 Few-shot Molecular Property Prediction on MoleculeNet 44
3.5.2 Few-shot Molecular Property Prediction on FS-Mol 46
3.5.3 Out-of-Domain Molecular Property Prediction and Optimisation . . . 53
Discussion 56

Probabilistic Multi-Task Regression for Identifiable Representation Learning 57

4.1
4.2

4.3

4.4

4.5

Motivation and Overview e 58
Preliminaries and Related Work 59
4.2.1 Disentanglement and Independent Component Analysis 59
4.2.2 Conditional Prior Models for Non-Linear ICA 60
4.2.3 Structural Approaches to Identifiability 61
Identifiable Multi-Task Representation Learning 61
4.3.1 Problem Formulation 61
4.3.2 Stage 1: Multi-Task Regression Network 64
4.3.3 Stage 2: Multi-Task Linear Causal Model 65
Empirical Evaluation 69
4.4.1 SyntheticData, 70
442 Real-World Molecular Data 73
Discussion e e 75

Diffusion-Inspired Training of Deep Generative Models for Enhanced Sampling 79

5.1
5.2

Motivation and Overview e 80
Preliminary: Kullback-Leibler Divergence 82
5.2.1 Definition of KL Divergence 82
5.2.2 Forward KL Minimisation 82

5.2.3 Reverse KL Minimisation 83

Table of Contents xi
5.3 Diffusive Kullback-Leibler Divergence 84
5.3.1 Definition of DIKL Divergence 85

5.3.2 Reverse DiKL Encourages Mode-Covering 87

5.3.3 Training Neural Samplers with Reverse DiKL 87

54 RelatedWork L 92
54.1 Neural Samplers 92

5.4.2 Variational Score Distillation 93

5.5 Empirical Evaluation o oL 93
5.5.1 Synthetic Multi-Modal Target Distribution 93

5.5.2 Many-Body Particle Systems L. 95

5.6 Discussion. e 101

6 Conclusions and Future Work 105
6.1 Thesis Summary 105

6.2 Future Research Directions 106
References 111
Appendix A Supplementary Material for Chapter 2 131
A.1 Derivation of Denoising Score Identity 131
A.2 Derivation of Denoising Score Matching 132
Appendix B Supplementary Material for Chapter 3 133
B.1 Cauchy’s Implicit Function Theorem 133
B.2 Configurations of ADKF-IFT 133
B.3 Configurations of All Baselineson FS-Mol 134
B.4 Further Comparisons Between DKT and ADKF-IFT 135
B.5 Meta-Testing Coston FS-Mol 138
B.6 Reproducibility Statemento 138
Appendix C Supplementary Material for Chapter 4 139
C.1 Proofof Theorem4.3.2 139
C.2 Proof of Theorem4.3.5 140
C.3 Derivation of the Conditionally Factorised Prior 146
C.4 Derivation of the Marginal Likelihood for MTLCM 147
C.5 Model Configurations 148
C.6 Ablation Study for the Linear Synthetic Experiment 149
C.7 Reproducibility Statement L Lo 149
Appendix D Supplementary Material for Chapter 5 151

xii

Table of Contents

D.1
D.2
D.3

D.4

D.5

D.6
D.7

DiKL Divergence is a Lower Bound of KL Divergence 151
Derivation of the Analytical Gradient for R-DiKL 152
Derivations of Score Identities 153
D.3.1 Derivation of Target Score Identity 153
D.3.2 Derivation of Mixed Score Identity 154
Derivations Regarding Invariance and Equivariance 154
D.4.1 Proof of Proposition 5.5.1 154
D.4.2 Monte Carlo Score Estimators are G-Equivariant 155
Experimental Setup Lo 162
D.5.1 Mixture-of-Gaussians 162
D.5.2 Many-Well-32 L 163
D.5.3 Double-Well-4 164
D.5.4 Lennard-Johns-13 oL 165
Guidance for Hyperparameter Tuning 166

Reproducibility Statement 167

List of Figures

3.1

3.2

33

34

3.5

3.6

4.1

A contrastive diagram illustrating the training procedures of ADKF-IFT, DKT
and DKL. (a) ADKF-IFT meta-learns the feature extractor parameters ¢ across
all tasks and adapts the base kernel parameters 6 to each task under a bilevel
optimisation framework. (b) DKT meta-learns all parameters across all tasks.
(c) DKL adapts all parameters toeachtask.
Mean performance with standard errors of all compared methods on all FS-
Mol testtasks. L
Box plots for the classification performance of all compared methods on 157
FS-Mol test tasks at different support setsizes..
Box plots for the regression performance of all compared methods on 111
FS-Mol test tasks at different support setsizes..
Mean performance with standard errors of ablation models on all FS-Mol
test tasks. ADKEF is like ADKF-IFT but assuming 85% = 0, i.e., updating
¢ with the direct gradient 86%. DKT+ is like DKT but tuning the base
kernel parameters ¢ during meta-testing. DKT-NORM is like DKT but with
normalised neural network features and labels.
Mean top-1 target values with standard errors as a function of the number of
molecules queried for all compared feature representations on four out-of-

domain molecular optimisation tasks.o

Assumed causal graph for the underlying data generating process. For each
task 7, we assume that the input data x are generated from the latent factors
z = (z., 2zs). The target variable y is generated by causal latent factors z,
and z, are spurious latent factors caused by y. The partition of causal and
spurious latent factors can potentially vary across tasks. In molecular property
prediction tasks, x corresponds to a molecule, y corresponds to the molecular
property to be predicted (e.g., toxicity) in each task 7, and z are the latent
factors that control the presence or absence of different substructures in the

molecule L e

xiv

List of Figures

4.2

4.3
4.4

5.1

5.2

5.3

The workflow of our proposed method. Shapes are used to track the positions
of the ground-truth and recovered latent factors. Colours are used to differ-
entiate between causal and spurious latent factors. We assume that the input
data is obtained by transforming the ground-truth latent factors with some
mixing function. We show that a multi-task regression network (MTRN) can
recover the ground-truth latent factors (i.e., data representations) up to linear
transformation and further propose a multi-task linear causal model (MTLCM)
to reduce the equivalence class for identifiability to permutations and scaling.
Identifiability performance for the latent factors learned on the QM9 dataset. .
Illustration of the possible relationships between a latent factor z; and target
variable y for a given task. Cases (a) and (b) are captured by our model. Note
that (b) can be handled by our model by treating 2, as a causal latent variable
with zero regression weight on the dashed green arrow z; — y. Case (c) is not
captured by our model, because although the unobserved confounder variable
c can be viewed as a latent factor, the red arrow ¢ — z, cannot be captured by

ourmodel. L

A comparison between model training with forward and reverse KL diver-
gences. Red contour lines depict a uni-Gaussian model, and blue contour
lines depict a mixture of Gaussians target distribution. The figures show
that F-KL exhibits the mass-covering property, while reverse KL exhibits the
mode-collapse phenomenon. The figures are reproduced from Bishop (2006).
We convolve a Gaussian kernel N'(Z|z, 0?) with o € {5, 10} to the original
distribution p(x). This demonstrates that Gaussian convolution can bridge
modes and even reduce the number of modes as the variance of the Gaussian
INCTEASES. . . . v v v ittt e e e e e e e e e
Heatmap of (log scale) R-KL and R-DiKL at different noise levels between
a Gaussian model (with mean parameter ;o and standard deviation parameter
o) and a two-mode mixture of Gaussians target distribution in 1D against
different values of the model parameters ;. and o. At lower noise levels (or in
the extreme case, the standard R-KL), the divergence is highly mode-seeking,
with the model favouring either one of the two modes in the target distribution.
In contrast, the KL divergence becomes more mode-covering at higher noise

levels, encouraging the model to cover both modes in the target distribution.

63
74

83

87

List of Figures

XV

54

5.5

5.6

5.7

5.8

5.9

B.1

Visualisation of samples generated by all compared neural samplers on MoG-
40. We train each method for 2.5 hours, which allows all to converge. FAB and
iDEM use replay buffers as in Akhound-Sadegh et al. (2024); Midgley et al.
(2023). The high-density regions of this target are within [—50, 50]. All meth-
ods were trained on the original scale, except for iDEM, which is normalised
to [—1, 1] following Akhound-Sadegh et al. (2024). This normalisation may
simplify the task.
2D marginal (1st and 3rd dimensions) of samples from MW-32. R-DiKL and
FAB manage to find all the modes with correct weights. Note that iDEM finds
all modes but with wrong weights. R-KL only captures one mode.
(Left) Wasserstein-2 (WW-2) distance of samples and total variation distance
(TVD) for sample energy values on MW-32. R-DiKL and FAB clearly outper-
form iDEM and R-KL in this evaluation. (Right) Histogram of sample energy
values. Our approach outperforms both FAB and iDEM. Note that although
the R-KL yields better energy histogram, it collapses to only one mode, as
shownin Figure 5.5. L
Histograms of sample energy values and interatomic distances on DW-4 and
LJ-13. R-DiKL achieves comparable performance to iDEM on both targets
with only one function evaluation (NFE) at sampling time, while iDEM
requires 1,000 NFEs.
Total variation distance (TVD) for interatomic distance of R-DiKL samples
as a function of the training iteration under different seeds on the DW-4 and
LJ-13 potentials.
Visualisation of the density of an MoG-4 target distribution with unequal
weights for the four Gaussian components. (a) Density heatmap of the target
distribution p4(x), a clean sample x and a noisy sample x; obtained with
Gaussian convolution parameters o, = 1, 0, = 1. (b) Density heatmap of the
denoising posterior distribution py(z|xs).o oL

Visualisation of the distributions of the optimal ADKF-IFT base kernel param-
eters 6 against the optimal DKT base kernel parameters on all FS-Mol test
classification tasks. In each plot, the blue histogram represents the empirical
distribution of a ADKF-IFT base kernel parameter (x-axis: hyperparameter
value, y-axis: frequency), and the black dotted line denotes the value of that
base kernel parameter in DKT.

99

136

XVvi List of Figures

B.2 Visualisation of the distributions of the optimal ADKF-IFT base kernel pa-
rameters ¢ against the optimal DKT base kernel parameters on all FS-Mol
test regression tasks. In each plot, the blue histogram represents the empirical
distribution of a ADKF-IFT base kernel parameter (x-axis: hyperparameter
value, y-axis: frequency), and the black dotted line denotes the value of that
base kernel parameter in DKT. 137
B.3 Wall-clock time consumed (with standard errors) when meta-testing on a
pre-defined set of FS-Mol classification tasks using each of the compared

meta-learning methods. Lo oL 138

C.1 Convergence of the model in the case of transformations of the latent factors
for identity, orthogonal and arbitrary linear transformations. Scaled means
standardising the features. 149

List of Tables

3.1

3.2

33

3.4

3.5

3.6

3.7

4.1

Statistics of four few-shot molecular property prediction benchmarks from
MoleculeNet. L
Mean test performance (AUROC%) with standard deviations of all compared
methods on MoleculeNet benchmark tasks at support set size 20 (i.e., 2-way
10-shot). e e
Mean rank of performance for all compared methods on all FS-Mol test tasks.
p-values from the two-sided Wilcoxon signed-rank test for statistical compar-
isons between ADKF-IFT and DKT/DKT+/ADKEF. The null hypothesis is
that the median of their performance differences on all FS-Mol test tasks is
zero. The significance level issettoa =0.05.
Mean performance with standard errors of top performing methods on FS-
Mol test tasks within each sub-benchmark (broken down by EC category) at
support set size 64 (the median of all considered support sizes). Note that
class 2 is most common in the FS-Mol training set (~ 1, 500 training tasks),
whereas classes 6 and 7 are least common in the FS-Mol training set (< 50
training taskseach).o oo
Descriptions of four out-of-domain molecular design tasks. the datasets for
the molecular docking and material design tasks are sub-sampled from the
much larger datasets provided in DOCKSTRING (Garcia-Ortegon et al., 2022)
and Harvard Clean Energy Project (Hachmann et al., 2011), respectively. The
datasets for the antibiotic discovery and antiviral drug design tasks are taken
from the antibiotic training set and the COVID Moonshot dataset provided in
Stokes et al. (2020) and Achdout et al. (2022), respectively.
Mean predictive performance (test NLL) with standard errors of a GP operating
on top of each compared feature representation on the four out-of-domain
molecular designtasks. o

Identifiability performance for recovering the linearly transformed synthetic
latent factors measured by strong MCC (%).

45
50

55

xviii

List of Tables

4.2

4.3

5.1

5.2

5.3

Identifiability performance for recovering the non-linearly transformed syn-
thetic latent factors measured by strong MCC (%). The weak MCC (%) for
MTRN is also reported as areference.
Identifiability performance for the latent factors learned on the superconductiv-
ity dataset measured by strong MCC (%). The weak MCC (%) for MTRN is

3 2

also reported as a reference. indicates divergence of optimisation during

rainIng. o v v e e e e e e e e e e e e e e e e e

Log density of samples generated by compared methods, evaluated on the
ground-truth target density of MoG-40. “True” indicates the log density of
ground-truth samples from the target distribution, which serves as a reference.
We only report the evaluation methods that can cover all the modes; see
Figure 5.4 for a visualisation of samples generated by all baseline methods.
Wasserstein-2 (VV-2) distance of samples, and total variation distances (TVDs)
of sample energy values and interatomic distances for all compared methods
on DW-4 and LJ-13. Each metric value is calculated using 5,000 samples and
repeated ten times. The mean and standard deviation values are reported.
Training and sampling wall-clock times for FAB, iDEM and our sampler,
measured on a single NVIDIA A100 (80GB) GPU. We omit the sampling
times for FAB on DW-4 and LJ13 as it is implemented in JAX with JIT
compilation, making direct comparison with the other methods implemented
in PyTorch not feasible. However, we expect FAB to have slightly slower

sampling times than R-DiKL due to its larger flow architecture.

71

73

95

. 100

Nomenclature

Acronyms/Abbreviations

W-2 Wasserstein-2

a.e. Almost Everywhere

ADKF Adaptive Deep Kernel Fitting

ADKL Adaptive Deep Kernel Learning

Al Artificial Intelligence

AIS Annealed Importance Sampling

ARD Automatic Relevance Determination
AUPRC Area Under the Precision-Recall Curve
AUROC Area Under the Receiver Operating Characteristic Curve
BNN Bayesian Neural Network

BO Bayesian Optimisation

CCA Canonical Correlation Analysis

CMCD Controlled Monte Carlo Diffusions
CNN Convolutional Neural Network

CNP Conditional Neural Process

const. Constant

XX

Nomenclature

DDPM Denoising Diffusion Probabilistic Model
DDS Denoising Diffusion Sampler

DFT Density Functional Theory

diag Diagonal

DiGS Diffusive Gibbs Sampler

DiKL Diffusive Kullback-Leibler (Divergence)
DKL Deep Kernel Learning

DKT Deep Kernel Transfer

DSI Denoising Score Identity

DSM Denoising Score Matching

DW Double-Well

EC Enzyme Commission

EGNN Equivariant Graph Neural Network

El Expected Improvement

EM Expectation-Maximisation

F-KL. Forward Kullback-Leibler (Divergence)
FAB Flow Annealed Importance Sampling Bootstrap
GAN Generative Adversarial Network
GFlowNet Generative Flow Network

GNN Graph Neural Network

GP Gaussian Process

GPU Graphics Processing Unit

HMC Hamiltonian Monte Carlo

Nomenclature

xxi

HOMO Highest Occupied Molecular Orbital Energy
i.i.d. Independently and Identically Distributed
ICA Independent Component Analysis

iCaRL Invariant Causal Representation Learning
iDEM Iterated Denoising Energy Matching

IFT Implicit Function Theorem

IS Importance Sampling

iVAE Identifiable Variational Autoencoder

KL Kullback-Leibler (Divergence)

kNN k-Nearest Neighbours

LG Langevin Dynamics

LJ Lennard-Jones

LSTM Long Short Term Memory

LUMO lowest Unoccupied Molecular Orbital Energy
MAC Multiply—Accumulate Operation

MALA Metropolis-Adjusted Langevin Algorithm
MAML Model-Agnostic Meta-Learning

MAT Molecule Attention Transformer

MCC Mean Correlation Coefficient

MCMC Markov Chain Monte Carlo

MH Metropolis-Hastings

MLE Maximum Likelihood Estimation

MLP Multi-Layer Perceptron

xxii

Nomenclature

MoG Mixture of Gaussians

MSI Mixed Score Identity

MT Multi-Task

MTLCM Multi-Task Linear Causal Model
MTRN Multi-Task Regression Network
MW Many-Well

NETS Non-Equilibrium Transport Samplers
NLL Negative Log Likelihood

NLML Negative Log Marginal Likelihood
NLP Natural Language Processing

OOD Out-of-Domain/Distribution

PAR Property-Aware Relation Network
PCA Principal Component Analysis

PIS Path Integral Sampler

ProtoNet Prototypical Network

PT Parallel Tempering

R-DiKL Reverse Diffusive Kullback-Leibler (Divergence)
R-KL Reverse Kullback-Leibler (Divergence)
ReLU Rectified Linear Unit

RF Random Forest

RNN Recurrent Neural Network

SDE Stochastic Differential Equation

SiLU Sigmoid Linear Unit

Nomenclature

xxiil

SIR

SKL

SM

SNIS

ST

TSI

TVD

ULA

VAE

VI

VJP

VP

VSD

Sampling Importance Resampling
Spread Kullback-Leibler (Divergence)
Score Matching

Self-Normalised Importance Sampling
Single-Task

Target Score Identity

Total Variation Distance

Unadjusted Langevin Algorithm
Variational Autoencoder

Variational Inference

Vector-Jacobian Product
Variance-Preserving

Variational Score Distillation

Chapter 1

Introduction

1.1 Motivation

Since the advent of AlexNet (Krizhevsky et al., 2012), deep learning has revolutionised many
fields in computer science, such as computer vision (Betker et al., 2023; Dosovitskiy et al.,
2021; He et al., 2016; Ho et al., 2020; Simonyan and Zisserman, 2015; Song et al., 2021b), nat-
ural language processing (Achiam et al., 2023; Devlin et al., 2019; Grattafiori et al., 2024; Guo
et al., 2025; Mikolov et al., 2013; Vaswani et al., 2017) and speech processing (Baevski et al.,
2020; Chen et al., 2022; Hinton et al., 2012; Hsu et al., 2021). More recently, this progress has
extended beyond computer science research into the emerging interdisciplinary domain of A/
for science (Wang et al., 2023a; Zhang et al., 2023b), which aims to harness the transformative
power of deep learning to accelerate scientific discovery and tackle pressing societal challenges
such as climate change, sustainable material design, and drug discovery.

One of the most compelling aspects of deep learning is its ability to directly produce high-
quality solutions to scientific problems when provided with enormous amounts of training data,
which far exceeds what traditional statistical data analysis approaches can offer. For example,
deep-learning-based spatio-temporal models have demonstrated exceptional capability in
simulating complex atmospheric dynamics with high resolution and precision thanks to the
vast amounts of weather data, enabling accurate weather forecasting and extreme weather
prediction across varying timescales (Allen et al., 2025; Bi et al., 2023; Bodnar et al., 2025;
Lam et al., 2023; Pathak et al., 2022). Moreover, once trained, these models can be deployed on
a personal laptop for real-time inference, which in many cases outperform traditional physics-

based algorithms that require weeks of large-scale simulation on supercomputers.

However, deep learning’s success heavily relies on access to large datasets for model training
(Hestness et al., 2017). In low-data scenarios, deep neural networks are prone to overfitting,

2 Introduction

often yielding highly confident yet inaccurate predictions (Gal, 2016; Goodfellow et al., 2016).
In such cases, they may even underperform simple machine learning methods such as random
forests or kernel-based approaches (Stanley et al., 2021). This presents a major barrier to
applying deep learning to solve scientific problems where collecting high-quality training data
requires costly experiments in laboratories or extensive simulations on supercomputers. For
instance, in computational chemistry, deep-learning-based force field models have shown great
promise in rapidly predicting the energies of molecules and the forces between atoms (Duval
et al., 2023), but their accuracy heavily depends on the quantity and quality of training data.
Generating high-fidelity data for training such models typically requires density functional
theory (DFT) (Jones, 2015) simulation, which is computationally intensive and difficult to

perform at scale.

In contrast, probabilistic inference offers a principled framework for developing robust machine
learning models in the data-scarce regimes (Ghahramani, 2015; Murphy, 2012). However, it
often struggles with high-dimensional, structured data where scalability and representation
learning is crucial. Recognising the complementary strengths of deep learning and probabilistic
inference, a growing body of research is attempting to integrate these two paradigms to enhance
model reliability, accuracy, and efficiency. A prominent approach in this direction is Bayesian
deep learning, which utilises Bayesian inference to estimate the parameters of deep neural
networks, thereby enabling reliable uncertainty estimates in their predictions (Neal, 1996).
These uncertainty estimates are particularly useful in scientific applications which involve
decision-making under uncertainty, such as drug discovery where small datasets are ubiquitous
and experimental validation is both costly and time-consuming. With access to the confidence
estimates of model predictions, scientists can prioritise promising drug candidates while
identifying molecules which warrant further wet-lab experimentation, ultimately reducing the

overall costs and accelerating the process of drug discovery and development.

Importantly, the relationship between deep learning and probabilistic inference is reciprocal.
While much prior work has focused on leveraging probabilistic inference to improve deep
learning such as developing uncertainty quantification methods for deep neural networks, we
highlight that deep learning also has the potential to improve the scalability and efficiency of
probabilistic inference. For example, conventional molecular dynamics simulation approaches
(Frenkel and Smit, 2023) typically rely on sampling-based probabilistic inference methods
such as Markov chain Monte Carlo (MCMC), which can be prohibitively slow to generate
equilibrium configurations for large protein complexes. In recent years, Boltzmann generators
(Noé et al., 2019) have received significant interest in the sampling community, which employ
deep learning to emulate molecular dynamics, offering an extremely powerful alternative to
traditional sampling algorithms: once trained, these models can efficiently generate indepen-

dent samples of protein configurations from Boltzmann distributions, significantly reducing

1.2 Thesis Outline and Contributions 3

the time required for probabilistic inference from months to hours (Lewis et al., 2024). This
demonstrates how deep learning can drastically accelerate probabilistic inference and provide

scalable solutions to previously intractable scientific problems.

This thesis focuses on synergistic improvements in deep learning and probabilistic inference
by leveraging their bidirectional relationship to enhance and advance methods from both fields.
To evaluate our contributions in a meaningful and challenging setting, we focus on real-world
molecular modelling tasks. This is a scientific application domain where neither pure deep
learning models nor pure probabilistic inference approaches are fully effective on their own,
since molecular data is high-dimensional, structured, and typically limited in quantity due
to the high cost of laboratory experiments and computational simulations. Specifically, we

consider the following two core applications in molecular science.

1. Molecular property prediction. We leverage probabilistic inference to enhance the
data efficiency and identifiability of deep neural networks for improved representation
learning. This results in improved generalisation performance and allows us to recover
canonical feature representations for molecular property prediction tasks where many

related small datasets are available.

2. Molecular configuration sampling. We employ generative deep learning to improve the
scalability of sampling-based probabilistic inference. This enables efficient generation
of equilibrium configurations from Boltzmann distributions of many-body particle

systems without access to ground-truth samples.

1.2 Thesis Outline and Contributions

The outline of the remaining chapters in this thesis is as follows.

» Chapter 2 establishes the technical background for this thesis, introducing the key
concepts and methods from probabilistic inference and deep learning. This chapter
is concluded by reviewing two families of deep probabilistic models in the literature,
demonstrating how methods from both fields can be combined effectively.

» Chapter 3 proposes a data-efficient meta-learning approach to extracting useful feature
representations from related small datasets with deep kernel Gaussian processes, en-
abling probabilistic inference for task-specific layers in deep neural networks. This
meta-learning problem is formulated within a novel bilevel optimisation framework,
which can be solved efficiently by leveraging the implicit function theorem. The empiri-

cal performance of the proposed method is evaluated on few-shot molecular property

4 Introduction

prediction and optimisation tasks, demonstrating its superior generalisation performance

in low-data settings. This chapter is based on Chen et al. (2023).

» Chapter 4 further investigates the theoretical properties of the feature representations
learned across multiple tasks with a probabilistic approach, particularly focusing on
recovering canonical representations that agree with the underlying data generating
process from observed data. We show that linear identifiability can be achieved with
a regular multi-task regression neural network. Furthermore, point-wise identifiability
may be achieved under certain assumptions of task structures. The new identifiability
results presented in this chapter are validated on both synthetic tasks and real-world
molecular property prediction tasks. This chapter is based on Chen et al. (2024a).

* Chapter 5 explores a complementary perspective to Chapter 3 and Chapter 4, aiming
to enhance the efficiency of probabilistic inference with deep learning. Inspired by
recent advances in generative deep learning, we propose a novel training paradigm for
fitting deep generative models to unnormalised probability distributions with diffusion-
inspired techniques. We demonstrate that the proposed algorithm enables us to train
deep generative models that can efficiently produce accurate independent samples from
both synthetic multi-modal distributions and Boltzmann distributions of many-body
particle systems. This chapter is mainly based on He et al. (2025) and also contains
materials from Chen et al. (2024b).

» Chapter 6 provides a comprehensive summary of our key findings and highlights the
contributions made in this thesis. In addition, we identify several open questions and
challenges, highlighting promising directions for future research.

* Appendices A-D provide supplementary materials for Chapters 2-5, including detailed
experimental setups and model configurations, additional empirical evaluation results,

and complete theoretical derivations.

1.3 List of Publications

This section provides a complete list of publications that I co-authored during my PhD upon

submission of this thesis.

Peer-Reviewed Conference and Journal Publications

* (Chen et al., 2023) Wenlin Chen, Austin Tripp, José Miguel Herndndez-Lobato. Meta-
Learning Adaptive Deep Kernel Gaussian Processes for Molecular Property Pre-

diction. International Conference on Learning Representations (ICLR), 2023.

1.3 List of Publications 5

* (Chenetal., 2024a) Wenlin Chen*, Julien Horwood*, Juyeon Heo, José Miguel Herndndez-
Lobato. Leveraging Task Structures for Improved Identifiability in Neural Network
Representations. Transactions on Machine Learning Research (TMLR), 2024.

* (Chen et al., 2024b) Wenlin Chen*, Mingtian Zhang*, Brooks Paige, Jos¢ Miguel
Hernéndez-Lobato, David Barber. Diffusive Gibbs Sampling. International Con-
ference on Machine Learning (ICML), 2024.

e (Wuetal., 2024) Wen Wu*, Wenlin Chen*, Chao Zhang, Phil Woodland. Modelling
Variability in Human Annotator Simulation. Findings of the Association for Compu-
tational Linguistics (ACL), 2024.

* (Chen and Ge, 2024) Wenlin Chen, Hong Ge. Neural Characteristic Activation
Analysis and Geometric Parameterization for ReLLU Networks. Advances in Neural
Information Processing Systems (NeurlPS), 2024.

e (He et al., 2025) Jiajun He*, Wenlin Chen*, Mingtian Zhang*, David Barber, José
Miguel Herndndez-Lobato. Training Neural Samplers with Reverse Diffusive KL Di-

vergence. International Conference on Artificial Intelligence and Statistics (AISTATS),
2025.

* (Rissanen et al., 2025) Severi Rissanen*, RuiKang OuYang*, Jiajun He, Wenlin Chen,
Markus Heinonen, Arno Solin, José Miguel Herndndez-Lobato. Progressive Tempering
Sampler with Diffusion. International Conference on Machine Learning (ICML), 2025.

Peer-Reviewed Workshop Publications

e (Tripp et al., 2022) Austin Tripp, Wenlin Chen, José Miguel Hernandez-Lobato. An
Evaluation Framework for the Objective Functions of de novo Drug Design Bench-
marks. Machine Learning for Drug Discovery (MLDD) Workshop at ICLR, 2022.

* (Chen et al., 2025b) Wenlong Chen*, Wenlin Chen*, Lapo Rastrelli, Yingzhen Li. Your
Image is Secretly the Last Frame of a Pseudo Video. Deep Generative Model in
Machine Learning: Theory, Principle and Efficacy (DeLTa) Workshop at ICLR, 2025.

* (Zhangetal., 2025) Mingtian Zhang*, Wenlin Chen*, Jiajun He*, Zijing Ou, José Miguel
Hernéndez-Lobato, Bernhard Scholkopf, David Barber. Towards Training One-Step
Diffusion Models Without Distillation. Deep Generative Model in Machine Learning:
Theory, Principle and Efficacy (DeLTa) Workshop at ICLR, 2025.

The asterisk superscript (*) indicates co-first authorship with equal contribution.

Chapter 2

Background

Deep learning and probabilistic inference are two rapidly evolving research fields in machine
learning, each with a large body of literature. This chapter introduces the key concepts and
methods in both fields that are relevant to the work presented in this thesis. We begin by
introducing the basics of probabilistic inference (Section 2.1.1), using Gaussian processes
(GPs) as an example where exact inference is tractable due to the analytical tractability of
Gaussian distributions. Next, we review sampling-based inference methods (Section 2.1.2),
which is a family of approximate inference methods commonly used when exact inference is
intractable. We then proceed to introduce deep neural networks (Section 2.2.1) and explain
how they can be used to extract feature representations from data (Section 2.2.2). Furthermore,
we present two popular families of deep probabilistic models in the literature: Bayesian
neural networks (Section 2.3.1) and deep generative models (Section 2.3.2), which integrate
techniques from both fields, offering complementary perspectives on how deep learning
and probabilistic inference can be combined effectively. Finally, we present some technical
background on molecular machine learning, introducing common molecular representation

methods for the two molecular modelling tasks considered in this thesis (Section 2.4).

2.1 Probabilistic Inference

Probabilistic inference offers a principled and powerful mathematical framework for expressing
beliefs and quantifying uncertainty using probabilities when estimating unobserved variables.
This framework allows us to incorporate prior knowledge into the inference process and
facilitates continual updates as new information becomes available. This can be incredibly
helpful in the scenarios where observations are limited or noisy, providing a solid foundation
for robust and informed decision-making under uncertainty. This section reviews probabilistic

8 Background

inference approaches relevant to this thesis. We refer the readers to Barber (2012); Bishop
(2006); Murphy (2012) for a complete introduction on this topic.

2.1.1 Exact Inference

Rules of Probabilistic Inference

For a continuous random variable x € X, the probability density function p(z) must satisfy

the following two requirements:

* Non-negative:
p(z) >0, VrelX. (2.1)

* Integrating to one:

/ p(z)de = 1. 2.2)

For two random variables x and y with marginal probability density functions p(x) and p(y),
conditional probability density functions p(x|y) and p(y|z), and joint probability density

function p(z, y), the two fundamental rules of probabilistic inference are as follows.

1. Sum rule reveals how to obtain marginal densities from the joint density:

pl@) = [pla.y)dy,

(2.3)
p(y) = /p(w, y) dz.

2. Product rule reveals how to obtain joint density from marginal and conditional densities:
p(,y) = plly)p(y) = p(ylz)p(z). (2.4)

Note that « and y are independent if and only if their joint density factorizes into the product

of the marginal densities:
p(z,y) =plx)ply) <<= =Ly (2.5)

Following Equation (2.3) and Equation (2.4), it is easy to derive the Bayes’ rule:

plz,y) _ plly)p(y)
p(x) [pxly)p(y) dy

p(ylz) = oc p(z|y)p(y)- (2.6)

2.1 Probabilistic Inference 9

Bayesian inference utilises Bayes’ rule to infer unobserved variables y from observed variables
x, resulting in the posterior probability p(y|x) which is proportional to the product of the
likelihood p(x|y) and the prior probability p(y) of the unobserved variable y.

Below, we give an example of exact inference with Gaussian processes.

Gaussian Processes

A multivariate Gaussian distribution N'(z|u, X2) defines a probability distribution over a finite-

dimensional variable z € R% (d, < co), whose probability density function is given by

- E-w), @D

Nzl £) = (27) %2 det ()2 exp <_
where ;1 € R% is a vector that defines the mean of the Gaussian distribution and ¥ €
R%=*4= ig a symmetric positive-definite matrix that defines the covariance of the Gaussian
distribution.

Gaussian processes (GPs) (Rasmussen and Williams, 2006) can be viewed as infinite-dimensional
generalisations of multivariate Gaussian distributions. A Gaussian process GP(m(-), c(-,-)) is
fully specified by a mean function mgy : X — R and a symmetric positive-definite covariance
functioncg : X x X — R.

GPs offer a useful tool for specifying priors over functions. Consider a GP prior distribution
over a function f : X C R% — R:

p(f|9) = gP(flmG()v C@('v))7 (2.8)

where 6 denotes the parameters of the mean function and covariance function. The covariance
function ¢y (-, -) encodes the inductive bias (e.g., smoothness and periodicity) of the function
specified by the GP. Following the convention of the GP literature (Neal, 1996), we will use

zero mean function m(-) = 0 for GP priors throughout this thesis.

It is worth noting that evaluating the GP prior distribution over a function f at finite number of
input locations X = [x1,--- ,zy]" € RV*% will result in a multivariate Gaussian distribution
over the function values f == f(X) == [f(x1), -, f(zn)]" € RY:

p(f1X,0) = N(£0, (X, X)), (2.9)

10 Background

where the covariance matrix is obtained by evaluating the covariance function ¢,(-, -) at all

pairs of input locations in X:

co(z1,71) co(wr,22) -+ co(x1,7N)
co(xa, @ co(xa, @ <o cg(ae,
co(X, X) = ol ?) ol ? 2) . ol : V| g (2.10)
co(zn,r1) co(wn,22) -+ co(zn,TN)
For regression tasks, we assume that the corresponding observations i == [y, -+ ,yn|' € RY

have an isotropic Gaussian likelihood with noise variance o?:
p(yl£,0) = N(y|t,0°I), (2.11)

where the noise variance parameter o is included in 6 for simplicity of notation.

One advantage of GP regression is that it is easy to perform principled model selection and
obtain the closed-form probabilistic predictive distribution due to the analytical tractability of
Gaussian distributions.

Specifically, we maximise the log marginal likelihood (or model evidence) of this GP regres-
sion model on the training dataset (X, y) with respect to all GP hyperparameters 6 for model

selection. The model evidence can be computed exactly as follows:
logp(y] X 0) = log [p(y] £,0)p(f X, 6) df 2.12)

=log N (y|0, co(X, X) + o*I) (2.13)

1 1
S in(ce(X, X))+ y - 5 log det(ca(X, X) + 0*I) + const. (2.14)

data fit model complexity

Interestingly, as shown in Equation (2.14), this objective regularises the GP regression model
by automatically balancing between data fit and model complexity (Rasmussen and Williams,
2006).

After obtaining the optimal GP hyperparameters, we can make predictions for the test data X.,.
By product rule, the posterior predictive distribution is defined as the ratio between the joint
distribution and the marginal likelihood:

y7 y*’X7 x*u 6)
p(y|X.0)

(Y X, X, y,0) = o x p(y, Y| X, 2, 0), (2.15)

2.1 Probabilistic Inference 11

) . (2.16)

Since the quotient of two Gaussian densities is a Gaussian density, we can obtain the mean

where the joint distribution is also a multivariate Gaussian distribution:

0 CQ(X*,X) Cg(X*,X*)+0'2[*

p(y, .| X, X, 0) ZN(B]

H [09(X7 X)+02 T cp(X, X))

and covariance of the posterior predictive distribution p(y.| X, X, y,0) == N (ys| 1, X4) by
matching the coefficients of y, and y, v, in the joint density p(y, v.| X, X, 0) and those in
(Y| Xs, X, y,0); see Murphy (2012) for a full derivation:
~1
(X, X, y) = cp(X, X) (o(X, X) + 0%I) (2.17)
2.(X0 X) = o(Xe, X) + 0°L — co(Xo, X) (co(X.X) +0%T) o(X,X.). (218)

uncertainty reduction

Since computing the GP posterior predictive distribution involves inverting the covariance
matrix cg(X, X) evaluated on the whole training dataset X, the computational cost of exact GP
regression is O(N?). This means that exact GP regression can be computationally intractable
for large datasets. Fortunately, there exist approximate inference approaches for GPs based on
inducing points, which significantly reduces the computational and memory costs; see, e.g.,
Titsias (2009) for more details.

Note that the uncertainty reduction in GP posterior predictive covariance in Equation (2.18) is
independent of y and purely based on the similarity between the training inputs X and test in-
puts X, measured by the covariance function, indicating that the GP regression prediction will

be confident when the test input is close to some training inputs and uncertain otherwise.

Interestingly, the form of the GP posterior predictive distribution is reminiscent of Bayesian
linear regression. In fact, GP regression is a function space representation of Bayesian linear
regression of the form

fl)=w'o(x) +e, &~ N(0,0%]), (2.19)

where the uncertainty of the function f is induced by a Gaussian prior over the regression
weights p,(w) = N (w0, I) in the weight space, and the feature map ¢ : X — R% (typically

dy > d) is related to the GP covariance function:
c(zi,z;) = qb(xZ)quS(xj), (2.20)

see Rasmussen and Williams (2006) for a thorough discussion.

12 Background

Regarding the choice of GP covariance functions in practice, the Matérn-v kernel function is a

family of covariance functions commonly used in GPs, which has the following form:

ce(asz,x»—afr()(F”“ ””ﬂ”) (@W) (2.21)

where [is the gamma function, K, is the modified Bessel function of the second kind. The
hyperparameters 6 include a signal variance (i.e., amplitude) parameter O'ch and a lengthscale
parameter /. Instead of using a single lengthscale [for all input dimensions, one could also use
automatic relevance determination (ARD), where a different lengthscale /; is used for each
input dimension ¢ = 1, - - - , d,.. The function specified by a GP with the Matérn-v covariance
function becomes smoother as we increase the value of v. When v = 1/2 + p for some p € N,

the Matérn-v kernel will have a simplified form.

* Matérn-1/2 kernel (v = 1/2,p = 0):

l; — ;|

cy*(wi,7;) = 0% exp <_z) . 2.22)

* Matérn-3/2 kernel (v = 3/2,p = 1):

cz%,.,xj):a(Ve - %H)exp< Vil = yjn) .

* Matérn-5/2 kernel (v = 5/2,p = 2):

Sllz; — Sl — x4 5|z, —
(s 2y) = (H\f\lxl ol Hrcgp%l!)exp(_fl!xl xJn),
(2.24)

* As v — oo, the Matérn-v kernel converges to the radial basis function (RBF) kernel:

R P
lim cj(z,y) = o7 exp <—M> : (2.25)

v—00 2[2

Tanimoto kernel (Ralaivola et al., 2005) is designed to handle binary vector inputs z € {0, 1}%,
which is particularly useful to process binary molecular fingerprints (Tripp et al., 2023). It

computes the Jaccard index (i.e., intersection over union) of the input binary vectors:

Cganimoto (z;, xj) —

2 (2.26)

2.1 Probabilistic Inference 13

where 1 € R% is a vector of ones. This kernel does not have any hyperparameters.

Finally, we note that new covariance functions can be constructed by combining existing

covariance functions with the following operations.

e The sum of two covariance functions ¢y, ¢5 is a valid covariance function:

c(xi, x) = c1(wq, x5) + colxi, x5). (2.27)

* The product of two covariance functions c;, c; is a valid covariance function:

c(xi, xj) = cr(xy, x5)ca(my, x)). (2.28)

* Multiplying a covariance function c; by a positive scalar o« > 0 results in a valid
covariance function:
oz, x;) = aci(zy, ;). (2.29)

2.1.2 Sampling-Based Inference

When exact probabilistic inference is analytically and computationally intractable, approximate
inference provides a feasible alternative. This section introduces sampling-based approxi-
mate inference methods relevant to this thesis. We refer the readers to Barber (2012) for a

comprehensive review of other approximate inference approaches.

Monte Carlo Method
Consider an intractable target probability distribution

pa(x) o pa(z) (2.30)

defined by an analytical but unnormalised probability density function py(z) with an intractable

normalising constant: .
7 = /ﬁd(x) de. 2.31)

This may be a Bayesian posterior distribution induced by a non-conjugate prior 7(z):
pa(z) = p(x|u) < p(u|z)m(z) = pa(x), (2.32)
or a Boltzmann distribution defined by a non-trivial, lower-bounded energy function £(x):

pa(x) o< exp(—E(x)) = pa(x)- (2.33)

14 Background

Probabilistic inference usually involves estimating the expectation of some function 5 of
interest over the target distribution p,(z):

— / h(z)pa(z) da. (2.34)

Although it is infeasible to obtain the exact probability density function p,(z) for the target
distribution or analytically solve the integral in Equation (2.34), it is still possible to esti-
mate this integral using the Monte Carlo estimator if we can draw samples from the target

distribution:

1 L
Ep,(2) 72 ha) = (2.35)

l:l

where £(0) ~ py(211)) are approximate samples of py(x) from the sampling distribution
Pa(z)). If all marginal sampling distributions match the target distribution, i.e., () =
pa(z) foralll =1,--- , L, then the Monte Carlo estimator is unbiased:

By, s () = Z Ej o) [z)] = Epyy [R(2)], (2.36)
and the variance of the Monte Carlo estimator is given by

~ 1 /
Var,) [h] = =Vary,) [h(z)] L2ZCOV (w0 20 [P D), h(2 D)), (2.37)

L AU

Furthermore, if the samples are independently and identically distributed (i.i.d.):

L L
Palz® L) H = de(x(l)), (2.38)

then the second term on the right hand side of Equation (2.37) vanishes, and hence the variance

of the Monte Carlo estimator reduces to

1
—Varpd(x) [h(ZL’)] (239)

Varﬁd(xu;m) [iL] = I

Therefore, with i.i.d. samples from py(x), the error of the Monte Carlo estimator shrinks at

rate O(1/+/L), which is independent of the dimensionality d, of the random variable z.

Below, we review some common sampling algorithms.

2.1 Probabilistic Inference 15

Importance Sampling

Importance sampling (IS) uses samples from a simple proposal distribution ¢(z) to estimate
the expectation |, (,)[(z)] as defined in Equation (2.34). The proposal distribution must
have a tractable probability density function ¢(z) and allow for efficient exact sampling (e.g.,

Gaussian distributions). The IS estimator works as follows:

/h(:z:)pd(x) de = /h(x)pd(m)q(x) dz (2.40)
: q()
= /h(m)wls(x)q(x) dz (2.41)
1 L
~ =Y h(a®)ws(2V), (2.42)
LS
where 2:) ~ ¢(z) are i.i.d. samples from the proposal distribution ¢(z), and the IS weights

are defined as the density ratio between the target distribution and proposal distribution:

For unnormalised target distributions p,(z) = pg(x)/Z, we can additionally apply IS to
estimate the normalising constant Z, which results in a self-normalised importance sampling
(SNIS) estimator:

R
T

lell/ (l wlzf(f) ?()(”> (2.46)

_ i Nwssas (20) (2.47)

where 7(1'5) ~ ¢(z) are i.i.d. samples from the proposal distribution ¢(z), the IS weights are

defined with the unnormalised target density function py(x) in this case:

- Pa()
wis(x) = , (2.48)
() q(x)
and the SNIS weights are obtained by normalising the IS weights:
e (®
wsnas(®) = =2 (2.49)

iy s (20)

16 Background

Intuitively, each IS weight w(z")) re-weights the function value h(x(")) evaluated at the
corresponding IS sample 2" ~ ¢(z) according to its contribution to the expectation. For IS to
be efficient, the proposal distribution ¢(x) should have high density in the regions where py(x)
has high density and h(x) has large magnitude, since such proposal distributions minimise the

variance of the IS estimator; see Owen (2013) for more details.

It is worth noting that IS is inefficient for high dimensional random variables, since the density
of a high dimensional distribution usually concentrates in a very small region of the support.
As a result, even a slight mismatch between ¢(z) and py(z) can lead to most IS samples
having negligible contributions to the estimate of the expectation. To make the best use of
available IS samples, one can alternatively perform sampling importance resampling (SIR),

which resamples the IS samples 2LL)

with replacement according to the empirical distribution
specified by the SNIS weights, reallocating samples with low importance weights to those with
high importance weights. The resampled set of samples follows the target distribution p,(x),

which can be used in the standard Monte Carlo estimator as defined in Equation (2.35).

Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods are a family of sampling algorithms which draw
a sequence of dependent samples from the target distribution p, () by simulating a first-order
Markov chain that has py(x) as its unique equilibrium distribution (i.e., it will eventually
converge to the target distribution py(x) regardless of the initial state). Note that there are
many Markov chains whose equilibrium distributions are p,(x), and therefore one can design

different MCMC samplers by constructing different Markov transition kernels 7'(2’|x).
It can be shown that a Markov chain has a unique equilibrium distribution py(x) if
1. itis irreducible (i.e., it can go from any state x to any other state x’ in finite steps);
2. itis aperiodic (i.e., it does not periodically revisit any state x);

3. it leaves the target distribution p,(z) invariant, i.e.,
pala’) = [T(@|@)pa(a) da. (2:50)

Note that a Markov transition kernel 7'(z’|z) is a conditional probability density function
which must be positive and integrate to one for any given z. One way to construct a Markov
chain that leaves p,(x) invariant is to find a Markov transition kernel that satisfies the detailed

balance condition (and thus the corresponding Markov chain is reversible):

T(l’l|[[‘)pd($) - T({E|I'/)pd(l’/), \V/ZE, wla (251)

2.1 Probabilistic Inference 17

which implies that p,(x) is the invariant distribution:

/T(x’]x)pd(w) de = /T(x\x’)pd(aj’) dz = pa(2’) /T(x\x’) dz = py(a'). (2.52)

Metropolis-Hastings Algorithm

The Metropolis-Hastings (MH) algorithm (Hastings, 1970; Metropolis et al., 1953) provides a
simple way to construct a Markov transition kernel 7'(z’|x) that satisfies the detailed balance
condition from any proposal distribution ¢(«’|x) with an additional acceptance step:

T(@'|zr) = A(z']x)g(a']), (2.53)

where the acceptance rate A(z'|z) is defined as

mfmy:mm<L“”wQMﬂ>:mm<L“ﬂmew>. (2.54)

q(2'|x)pa(z) q(z'|x)pa(z)

It is easy to verify that T'(z'|z) always satisfies the detailed balance condition. Note that
the MH algorithm only requires evaluating the unnormalised target density pq(x), since the
normalising constant is cancelled out from the numerator and demonstrator in Equation (2.54).

In practice, the MH algorithm works as follows at each step:
1. Propose a new state 2’ ~ ¢(z'|x) given the current state x.
2. Calculate the acceptance rate ay == A(2'|x) according to Equation (2.54).

3. Accept the proposal x’ as the next state with probability cny. If the proposal is rejected,

retain the current state = as the next state.

It is importance to note that the choice of the proposal distribution ¢(«’|x) determines the per-
formance of the MCMC sampler, and the optimal choice of ¢(x’|x) depends on the properties
of the landscape of the target distribution py(x). Simple proposals such as Gaussian random
walk q(2'|z) = N (2'|x, 021) is unlikely to perform well for complicated high-dimensional
target distributions due to its “blindness”: it typically requires a tiny variance o2 to maintain a
reasonable acceptance rate (Bishop, 2006), resulting in highly correlated samples. Below, we
introduce two classes of advanced MCMC algorithms with adaptive proposals that leverage
the local landscape information of the target density function.

Langevin Dynamics

Metropolis-adjusted Langevin Algorithm (MALA) (Roberts and Stramer, 2002; Roberts and

Tweedie, 1996) defines its proposal distribution based on a discrete-time Langevin stochastic

18 Background

differential equation (SDE):

q(2'|z) = N(2'|x + nV,log pa(z), v2nI), (2.55)

where 77 > 0 is a hyperparameter that controls the step size, and the discretisation bias can
be corrected by the MH algorithm. As the step size n — 0, the discretisation errors vanish
and thus the MH correction step may be omitted, which recovers the unadjusted Langevin
algorithm (ULA) (Grenander and Miller, 1994; Roberts and Tweedie, 1996).

Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) (Duane et al., 1987; Hoffman et al., 2014; Neal et al., 2011)
augments the original random variable x with an auxiliary momentum variable v, which
defines a joint probability distribution over the phase space:

p(x,v) = pa(z)p(v) o pa(z)e K@), (2.56)
where p(v) = N (v|0, M) corresponds to the kinetic energy K (v) = sv'M v with a
hyperparameter M that represents the mass matrix. The Hamiltonian of this system is given by
H(z,v) = —logps(z) + K(v). HMC generates (x,v) samples by simulating the following

Hamiltonian equations:

dez O0H 1
dv o0H ~

Accurate numerical simulation of the Hamiltonian equations can be done by the leapfrog
algorithm (Neal et al., 2011). For a given current state z, a single step of the leapfrog algorithm
with step size 1 proceeds as follows:

v~ N(0, M), (2.59)
Vo =+ gvcg log pa(z), (2.60)
' =ax+nM v, (2.61)
V= v+ gvx, log fa(z"). 2.62)

In practice, we typically perform several steps of the leapfrog algorithm to generate a new
sample. In theory, the acceptance rate of the HMC proposal is always one since the Hamil-
tonian is conserved in a Hamiltonian system (i.e., H(x,v) = H(2/,v")) and the Hamiltonian

dynamics is always reversible. Nevertheless, the MH algorithm is usually employed to correct

2.1 Probabilistic Inference 19

the potential discretisation bias in practice:

exp(—H (2',v")) } ' (2.63)

= mi 1
e mm{ exp(—H(z,v))

Annealed Importance Sampling

The initial state of an MCMC sampler is often a random sample from some simple initial
distribution ¢(x). Although the Markov chain will eventually converge to the target distribution
pa(x) regardless of the initial state, it can take a very long time for the MCMC sampler to mix
well in practice when ¢(z) is far away from py(x). Also, recall that in IS , the expectations
of functions over p,(z) are estimated with samples from a simple proposal distribution ¢(z)

which may not have many overlaps with py(x), resulting in inefficient sampling.

Annealed importance sampling (AIS) (Neal, 2001) introduces a sequence of intermediate
distributions {;)(z)}+_, that interpolate between the proposal distribution ¢(x) and the
target distribution p,(x) to facilitate a smoother transition:

Ty () o< q(2)' " Ppa(x) oc q(z)' = pa(a)™, (2.64)

where 0 =) < 1 < -+ < Bx-1 < fx = 1, m)(x) := q(x) is the proposal distribution, and
Tk (x) = pa(x) is the target distribution. The AIS algorithm runs iteratively as follows:

* Draw the initial sample x) ~ 7(0)(z) = ¢(2) from the proposal distribution.

* Fork =1,2,---,K — 1, draw z() ~ 7()(z) by running an MCMC sampler (e.g.,
HMC) whose initial state is the previous sample x(,_1) and which leaves the current

intermediate distribution 7 invariant.

In the end, AIS produces a sample x = z(x_1) which is close to the target distribution
T(ky(x) = pa(x). We can then calculate the IS weight in the joint space over (. 1), which
defines the AIS weight:

wR@e-n) (2.65)

Wars (T(0:x—1) OCH o (@)

Finally, we can obtain the (self-normalised) AIS estimator by replacing the IS samples
L)~ q(z) and IS weights g in the SNIS estimator as defined in Equation (2.47) with the

20 Background

AIS samples xgéif{)_l) ~ AIS! and AIS weights us:

L h(x(l))lb (x(l))

=1 AIS*(0:K—1

/h(x)pd(x) dr ~ = (x(l’)(|)/ (2.66)
=1 WAIS\(0: K —1)

Alternatively, one can also perform SIR with AIS samples and weights to obtain a resampled

set of samples that follow the target distribution p,().

2.2 Deep Learning

This section reviews neural network architectures and representation learning approaches
relevant to this thesis. We refer the readers to Bishop and Bishop (2023); Goodfellow et al.

(2016) for a comprehensive introduction to deep learning.

2.2.1 Deep Neural Networks

Deep neural networks are a large class of highly flexible non-linear models capable of extract-
ing intrinsic patterns in data. This enables them to model complex mappings from inputs to
outputs. Different neural network architectures incorporate distinct inductive biases tailored
to specific types of input data. For instance, convolutional neural networks (CNNs) (LeCun
et al., 1998) excel in modelling spatial data (e.g., image), recurrent neural networks (RNNs)
(Cho et al., 2014; Hochreiter and Schmidhuber, 1997) and transformers (Vaswani et al., 2017)
are well-suited for sequential data (e.g., text and audio), and graph neural networks (GNNs)
(Scarselli et al., 2008) are designed to process relational data (e.g., graph). Below, we introduce
two types of neural network architectures relevant to this thesis.

Multi-Layer Perceptrons

Multi-layer perceptrons (MLPs) are the most generic neural network architectures with fully
connected neurons, which are suitable for general function approximation. Mathematically, an
MLP layer applies an affine transformation to the input z € R% followed by an element-wise

non-linear activation function ¢, which produces an output 2’ € Ru:
v =g(W'z +b), (2.67)

where the weight matrix W € R *de« and the bias vector b € R% are learnable parameters,

and d;, and d,, are the dimensionalities of the input and output vectors, respectively. In

'We use superscripts with parentheses to denote sample index and subscripts with parentheses to denote the
index of each intermediate step in AIS.

2.2 Deep Learning 21

practice, a single MLP layer may not be sufficiently flexible. To better capture the intricate
patterns in complex data, we typically need to construct deep neural networks by stacking
multiple MLP layers on top of one another depending on the complexity of the function to be

approximated.

In modern neural network architectures, Rectified Linear Unit (ReLU) (Glorot et al., 2011)
and its variants are the most widely used activation functions due to their simplicity and
effectiveness. The ReLU activation function is a linear function for positive inputs and outputs
zero for negative inputs:

ReLU(s) = max(0, s). (2.68)

Sigmoid Linear Unit (SiLU) (Hendrycks and Gimpel, 2016) is a variant of ReLU which
avoids the hard cut-off point at s = 0 by using a smoother transition defined by the sigmoid
function:

SiLU(s) = s ® Sigmoid(s) = He}‘;(_s), (2.69)

where © denotes the element-wise multiplication operator.

Graph Neural Networks

Graph neural networks (GNNs) are well-suited for extracting feature representations from
graph data such as molecules (Bruna et al., 2014; Corso et al., 2020; Duvenaud et al., 2015;
Gilmer et al., 2017; Gori et al., 2005; Jin et al., 2017; Kearnes et al., 2016; Kipf and Welling,
2017, Liet al., 2016; Scarselli et al., 2008; Schiitt et al., 2017; Xu et al., 2019).

In a GNN, the node features V = {vy,})_, and edge features & = {e;;}5_, of a graph
G(V, &) are iteratively updated in each layer. Predictions can then be made by passing the
global feature representation u of the graph G to a readout network. Below, we describe a
general formulation of GNNs following Battaglia et al. (2018).

A GNN layer updates each node feature v,,, by message passing:
v}, = UPDATE (vy,,, AGGREGATE ({ (U, v}, €mj)|J € N(m)})), (2.70)

where N (m) is a set that contains indices of nodes that are neighbours of node m, AGGREGATE
is a set function parameterised by a neural network that is permutation invariant to the elements
in a set, and UPDATE is an MLP network which produces updated node features v/, from the
current node features v,,, and the aggregated messages from its neighbour nodes. A graph-level
global feature representation w is then obtained by applying a set function READQUT to the set
of all node features from the final GNN layer:

u = READQUT ({vﬁ,‘j“a” i‘f:l) . 2.71)

22 Background

Deep set (Zaheer et al., 2017) provides a simple way to construct set functions using neural
networks: it applies a single neural network to every element in the set, aggregates the
resulting feature representations using a permutation invariant operation such as averaging,

and processes the aggregated representation with an MLP network.

Moreover, for tasks which involve modelling the 3D positions of atoms in the Cartesian
coordinate, a specialised class of GNNs called geometric graph neural networks is designed
to ensure that their outputs remain invariant or equivariant to the translations and rotations
of the input molecules (Batatia et al., 2022; Satorras et al., 2021), inherently respecting the
symmetries of physical systems. This eliminates the need for GNNs to learn to model every
possible invariant or equivariant configuration, significantly improving data-efficiency and
model generalisation. We refer the readers to Duval et al. (2023) for a comprehensive survey

of geometric deep learning for graph data.

2.2.2 Supervised Representation Learning

Deep neural networks are powerful tools for extracting informative low-dimensional feature
representations from high-dimensional structured data, which are crucial for generalisation,
interpretability, and transferability (Bengio et al., 2013). In supervised learning, we typically
optimise the input-output mapping performance of deep neural networks. Once trained,
the learned representations that capture the features of the input data at different levels of

abstractions can be derived from the intermediate layers of these models.

Multi-Task Representation Learning

Deep neural networks often require a large amount of training data to learn useful represen-
tations (Goodfellow et al., 2016). However, small datasets are ubiquitous in many scientific
problems, making it challenging for deep neural networks to learn reliable representations
from any single dataset alone. Alternatively, if we have access to many related datasets which
share some common mechanisms, we may be able to extract feature representations that
are useful for simultaneously solving all these tasks (Caruana, 1997). A typical multi-task
representation learning approach employs a shared deep neural network backbone to produce
a common representation, followed by a task-specific output layer (or “head”) that works on
top of the common representation to solve each task. This particular setup encourages the
backbone to encode information that is useful for all tasks, which promotes knowledge transfer
across all datasets and reduces overfitting on any individual dataset during training.

2.3 Probabilistic Deep Learning 23

Identifiability

Since modern deep neural networks are over-parameterised by design, the feature representa-
tions learned by these models are generally unidentifiable (Roeder et al., 2021). This means
that even with sufficient training data, and even if our model family contains the ground-truth
model and the training loss converges to the global optimum value, there is no guarantee that
the learned representations will reflect the underlying ground-truth data generating process.
It is desirable to recover canonical feature representations, since they may offer valuable
insights for understanding the underlying mechanisms in many scientific problems. The lack
of identifiability limits the interpretability and out-of-distribution generalisation capabilities of
the learned representations (Lu et al., 2022). Therefore, establishing conditions under which

deep neural networks can recover identifiable representations is an active research field.

2.3 Probabilistic Deep Learning

This section reviews two widely used classes of deep probabilistic models: Bayesian neural
networks and deep generative models, which are representative examples from the literature
that aim to combine the strengths of probabilistic inference and deep neural networks from
two complementary perspectives.

2.3.1 Bayesian Neural Networks

For deep neural networks trained on small datasets, it is crucial to quantify the uncertainty
in their predictions, especially for downstream tasks that involve decision-making (Antoran,
2024; Gal, 2016). Bayesian neural networks (BNNs) address this by treating neural network
parameters as random variables and using Bayesian inference to update their probability
distributions (Barber and Bishop, 1998; Hernandez-Lobato and Adams, 2015; Neal, 1996).
Specifically, for a given training set D = {(x,, y,)}_,, the posterior density of the parameters
0 of a neural network fy(x) can be obtained by Bayes’ rule:

N

p(0ID) o< TT plunfen, O)o(), (2.72)
where py(6) is the prior density of the parameters, and p(y,|z,, @) is the likelihood param-
eterised by the neural network (e.g., a conditional Gaussian distribution N (y| fa(), 0?) for
regression tasks). Since exact inference for Equation (2.72) is generally intractable due to the
non-linearity of the neural network fy(z), approximate inference techniques such as MCMC
(Neal, 1996), amortised variational inference (Blundell et al., 2015) and Laplace’s approxi-
mation (Daxberger et al., 2021) are commonly employed. Finally, the posterior predictive

24 Background

distribution of a neural network can be obtained by marginalising out the parameters over their
posterior density from the likelihood:

ply.Jz.. D) = / (y-la-.O)p(0ID) 0 @73)

L
Zp yila., 00), 600 ~ p(6)D). (2.74)
l*l

However, balancing computational tractability while maintaining high-quality of uncertainty
estimates remains a major challenge in practice (Antoran, 2024; Fortuin, 2022; Tomczak et al.,
2021). Instead of adopting a fully Bayesian approach, an alternative in Bayesian deep learning
is to perform Bayesian inference only for the parameters in the last layer of a neural network
(Harrison et al., 2024; Lazaro-Gredilla and Figueiras-Vidal, 2010; Ober and Rasmussen, 2019;
Watson et al., 2021). This is often referred to as a Bayesian last layer, which strikes a practical
trade-off between reliable uncertainty estimation and computational scalability. This approach
is also closely related to deep kernel learning (Hinton and Salakhutdinov, 2007; Wilson et al.,
2016b), where a GP is placed on top of a deep neural network to capture the uncertainty in the
output layer of the neural network.

2.3.2 Deep Generative Models

Deep generative models leverage deep neural networks to improve the quality of generative
modelling for data distributions of interest. Below, we introduce two types of deep generative

models relevant to this thesis: deep latent variable models and diffusion models.

Deep Latent Variable Models

Deep latent variable models are a family of deep generative models which define the marginal
density of dataz € X C R through a latent variable:

= /pg(x|z)pz(z) dz, (2.75)

where the latent variable z € Z C R% (d, < d,) follows a simple distribution p.(2)
apriori such as the standard Gaussian distribution, and the likelihood py(z|z) is a conditional
distribution parameterised by a neural network with learnable parameters 6. For a target
distribution py(x) with i.i.d. ground-truth samples D = {x,}»_,, deep latent variables are
often trained by maximising the log marginal density log pg(x) averaged over the training set

D with respect to 6. Below, we introduce some common deep latent variable models.

2.3 Probabilistic Deep Learning 25

Variational autoencoders (VAEs) (Kingma and Welling, 2013) pre-define the likelihood, e.g.,
using a Gaussian distribution py(z|z) = N (x|ue(2), 0*I) with its mean parameterised by a
neural network f9(2) and a fixed variance o2, which results in an intractable model density
po(z). Kingma and Welling (2013); Wainwright et al. (2008) derive a tractable variational
lower bound of the log marginal density log ps(z) with a learnable variational distribution
¢y (z|z) for training VAEs:

log pe(z) = log/pg(m|z)pz(z) dz (2.76)
_ po(|2)p-(2)
po(|2)p=(2) | _
2 By (21) [10% W] = F(0,9), (2.78)

where the last line follows by Jensen’s inequality and the equality holds when the approximate

posterior becomes exact:

po(z|2)p-(2)

2.79
o) (2.79)

qs(2]7) = po(z]z) =
Note that the variational lower bound F (6, ¢) can be expressed as a linear combination of
a reconstruction error term for the observed variable x and a KL regularisation term for the

latent variable z, which is the origin of the name variational autoencoders:

F(0,0) = Eq, (210 [log po(]2)] — KL(gy(2|2)]|p(2)) (2.80)
1
= =55 Ea, e [ll7 = p10(2)|°] = KL(gs (2[2)[[p=(2)) + const., (2.81)
reconstruction error of & KL regularisation of z

The variational distribution is usually chosen to be a mean-field Gaussian distribution:
6o (27) = N (2|my(x), diag(ss(x)*)) (2.82)

whose mean m () and variance s,(x)? are parameterised by a neural network with learnable
parameters ¢. In practice, both sets of parameters 6 and ¢ are jointly trained by maximising the
lower bound F (6, ¢) of the log marginal density. The expectation over g, (z|z) is estimated by
the Monte Carlo method with the reparametrisation trick (Kingma and Welling, 2013):

z=mg(x)+ sg(x) @e, e~ N(0,I), (2.83)

which results in a differentiable sample from the variational distribution g4(z|x), since the

standard Gaussian noise ¢ is independent of the parameters ¢ and ¢. While this variational

26 Background

approach circumvents the intractability of log py(x), it introduces its own challenges and
limitations, such as the limited flexibility of the variational family, the potential looseness of

the variational bound, and the variational over-pruning issue (Turner and Sahani, 2011).

Normalising flows (Dinh et al., 2017; Kingma and Dhariwal, 2018; Papamakarios et al., 2021;
Rezende et al., 2020) employ a deterministic likelihood with an invertible neural network fj,
which results in a tractable model density that can be directly optimised:

det (é?fg_l(:c)> ‘ . (2.84)

log po(z) = log p.(fy ' (x)) + log o

More generally, deep implicit models, such as generative adversarial networks (GANs) (Good-
fellow et al., 2014; Nowozin et al., 2016), also use a Dirac delta likelihood function d(-) but
allow the generator fy to be a standard non-invertible neural network (Goodfellow et al., 2014;
Huszar, 2017):

o) = / 5z — fol2))ps(2) dz, (2.85)

which is more flexible than VAEs and normalising flows, as it avoids pre-defining a constrained
distribution family for the likelihood py(z|z) and does not require the generator fj(z) to be
invertible. However, the model density py(z) of a deep implicit model may not have a valid
density function. For example, when d, < d,, the resulting model density py(z) may not
be absolutely continuous (Arjovsky et al., 2017; Zhang et al., 2020). In this case, we refer
to pg(x) as generalised model density. For this reason, we may not be able to train implicit
models with common likelihood-based parameter estimation approaches. For instance, GANs

employ adversarial training instead with an additional discriminator network.

Diffusion Models

Diffusion models have achieved photo-realistic visual generation quality (Ho et al., 2020;
Karras et al., 2022; Sohl-Dickstein et al., 2015; Song et al., 2021a). Unlike deep latent variable
models which directly map a latent variable z to observed data x, diffusion models employ a
sequence of intermediate variables 1, s, - - -,z € R% to capture the features of data 2’ at

different fidelity and facilitate a gradual generation path from noise to data:

T
po() = [p-(or) [T po(wi-1loe) darr. 2.86)

t=1
Diffusion models employ a forward diffusion process to create a sequence of increasingly noisy
data xy, - - - , xp by progressively adding small Gaussian noise until the data z is corrupted to

white noise xp. On the distributional level, the forward diffusion process gradually transforms

2For simplicity of notation, we define x(= x.

2.3 Probabilistic Deep Learning 27

the data distribution p,(z) to a known noise distribution p,(x7) (e.g., standard Gaussian

distribution) with a sequence of pre-defined Gaussian convolution kernels:
ki(zz) = N(z|oyx,02D), t=1,...,T. (2.87)
The resulting marginal distribution of noisy data at each time ¢ is given by

Paslee) = [ku(wda)pa(e) da. 2.88)

Given the forward diffusion process, the generation model py(z;_1|z;) essentially defines a
denoising process, which generates a data = ~ py(x) by gradually denoising a white noise

xp ~ p,(x7). In practice, we typically model the denoising process by
po(Ti_1|xy) = / ki1 (zi—1|x, z¢)po(z|2y) A, (2.89)
where the denoising posterior is approximated by a conditional Gaussian distribution
po(x|zs) = N (x|pe(z, 1), St), (2.90)

with mean iy (x, t) parameterised by a time-conditioned neural network with learnable pa-
rameters 0 and covariance 3; = 621 fixed to some pre-defined constant value®. Song et al.
(2021a) show that the smoothing distribution of the following functional form corresponds to
the forward diffusion process defined in Equation (2.87):

— X
Q120 + \/ Sta) (291)
V1 —a?)

where the value of s? determines the properties of the diffusion process (e.g., Markov property

ktfl(xt71|xaxt> =N (xt 1

and stochasticity).

There are various parameterisations for diffusion models. Karras et al. (2022) directly work
with the denoising mean parametrisation of diffusion models by training a time-conditioned
denoising network piy(x,t) to predict the denoising mean of the data x from its noisy version
x; for all t with the EDM loss:

Leom(0) = Buypa(oye@ele) MO || o (e, 1) — 2[|7], (2.92)

where U(t) == U(t|{1,--- ,T}) denotes the uniform distribution over ¢ € {1,--- T}, A(t)
is a positive scalar weighting function, and the expectation is estimated by the Monte Carlo

31t is possible to estimate the optimal covariance of the denoising posterior distribution, which can lead to
better denoising performance (Bao et al., 2022; Ou et al., 2025).

28 Background

method. Once the denoising network (24,) is trained, we can simulate the denoising
process in Equation (2.89) using the Monte Carlo method with samples © ~ py(z|z;) =
N (x|pg(xy, t), ;) from the denoising posterior distribution.

Interestingly, Tweedie’s formula (Efron, 2011; Robbins, 1992) reveals an important connec-
tion between the denoising posterior mean (¢, t) and the noisy model score sy(zy,t) =

Va:t IOg p@,t (xt):

2
t
Mg(xt, t) _ T + O-t Se(gjt?)’ (2.93)

o

which allows us to learn the denoising posterior mean iy(z,t) from data using denoising
score matching (DSM) (Vincent, 2011).
Proposition 2.3.1 (Denoising Score Identity). For any convolution kernel k,(x;|x), we have

Vi, logpas(x) = /th log ki(z¢|x)pa(z|z:) de, (2.94)

where py(z|x) x ki(xi|x)pa(z) is the denoising posterior distribution. For ki(x:|x) =

N (z¢|ayx, 021) as defined in Equation (2.87), this recovers Tweedie’s formula.

The proof of Proposition 2.3.1 can be found in Appendix A.l. Note that Proposition 2.3.1 also

holds for the noisy model score V,, log pg ().

Song and Ermon (2019); Song et al. (2021b) work with the score parametrisation of diffusion
models by training a time-conditioned score network sy(x, t) to predict the noisy data score
V., log pas(x:) for all ¢ with the DSM loss:

Losw(8) = Bupaom i NOllso(zi,) = Vo log k()2 (2.95)

The derivation of the DSM loss function is based on the score matching (SM) loss (Hyvirinen,
2005) and DSI, which can be found in Appendix A.2. Once the score model sy (¢, t) is trained,
we can plug it into Tweedie’s formula as stated in Equation (2.93) to obtain the denoising
posterior mean fi(xy, t).

Alternatively, Ho et al. (2020); Song et al. (2021a) work with the noise parametrisation of
diffusion models by training a time-conditioned noise prediction network egy(x, t) to predict

the noise ¢ used to corrupt the data z to its noisy version x; for all ¢ with the DDPM loss:

Lopem(0) = Eypa@neo.n A1) lleo(cwr + ove, t) — e|?]. (2.96)

Once the noise prediction model €y(xy, t) is trained, the denoising posterior mean (i (¢, t)

can be obtained by
Ty — Ut€0($ta t)

po(ze,t) = (2.97)

Qi

2.4 Molecular Representations for Machine Learning 29

2.4 Molecular Representations for Machine Learning

As molecules are structured data, they must be encoded into machine-readable representations
suitable for processing by machine learning models. This section introduces molecular
representation methods commonly used in machine learning for the two molecular modelling
tasks addressed in this thesis.

2.4.1 Molecular Property Prediction

Molecular property prediction is the task that aims to predict the properties (e.g., toxicity and
permeability) of molecules from their structures. Deep learning approach has become popular
for this task in recent years due to its fast inference speed and competitive accuracy (Gilmer
et al., 2017), which has the potential to accelerate the drug discovery process (Stanley et al.,
2021). The following three molecular representation methods are frequently employed in
machine learning.

1. Simplified Molecular Input Line Entry System (SMILES) (Weininger, 1988, 1990;
Weininger et al., 1989) is a line notation for representing molecular graphs using strings
following a set of fixed rules. These strings are easily readable by humans and can
be processed by standard natural language processing (NLP) models such as LSTM
(Hochreiter and Schmidhuber, 1997). One undesirable property of SMILES strings is
that they may transform short-range dependencies between atoms in a molecular graph

into long-range dependencies in the corresponding SMILES string in some cases.

2. Molecular fingerprints (Rogers and Hahn, 2010) encode molecular graphs into vector
representations where each element corresponds to a molecular substructure. The
algorithm takes a molecular graph, a radius parameter R, and a vector length parameter
L as input. It first applies a hash function to atom features in the graph to assign integers
to atoms. Then, for each radius r = {1,--- , R}, it concatenates atom integers with the
integers of their neighbouring atoms, and assigns new integers to atoms by applying the
hash function to the concatenations. Finally, the molecular fingerprint representation is
obtained by creating an L-dimensional vector of zeros and setting every entry that is

mapped to a generated integer for an atom to one.

3. Graph representation of molecules is natural with minimal loss of information, since
molecular graphs are invariant to permutation of atoms and can encode distances between
atoms. A molecule with M atoms can be represented by an undirected graph G(V, £),
where node features V = {v,,}*_, are associated with atoms, and edge features
&= {%}%:1 are associated with bonds. Molecular graphs can be processed by GNNs.

30 Background

2.4.2 Molecular Configuration Sampling

Molecular configuration sampling is the task that aims to generate all possible 3D structures
of a given molecule from its Boltzmann distribution, which is essential for simulating or
emulating molecular dynamics and estimating key macroscopic physical quantities (e.g.,
binding affinity). Deep learning approach has attracted significant attention for this task in
recent years due to its potential to accelerate and amortise this process (e.g., emulating the
dynamics of large proteins) (Noé€ et al., 2019). The following two coordinate systems are often

used to represent the 3D structures of molecules in machine learning.

1. Internal coordinates describe 3D molecular structures using bond lengths, bond angles
and dihedral angles. This compact representation has less redundancy and thus is
typically computationally more efficient and easier to manipulate. However, internal
coordinates vary across different molecules, making it challenging to transfer learned

models between them.

2. Cartesian coordinates represent 3D molecular structures using ordered-triples (z, y, z)
in three-dimensional space. This representation is intuitive for humans and consistent
across all molecules. However, it poses challenges for machine learning models, as it
requires accounting for physical constraints such as invariance or equivariance to certain

transformations.

Chapter 3

Meta-Learning Gaussian Processes for Data-
Efficient Representation Learning

This chapter is based on Chen et al. (2023):
» Wenlin Chen, Austin Tripp, José Miguel Herndndez-Lobato. Meta-Learning
Adaptive Deep Kernel Gaussian Processes for Molecular Property Prediction.
International Conference on Learning Representations (ICLR), 2023.

All co-authors co-developed the method and co-wrote the manuscript. In addition, I

wrote all code and performed all experiments for this work.

J

As introduced and discussed in the previous chapter, deep neural networks are powerful tools
for learning useful feature representations from data for downstream tasks (Bengio et al.,
2013). However, the “data-hungry” nature limits their performance in low-data regimes (Gal,
2016; Goodfellow et al., 2016). On the other hand, Gaussian processes (GPs) (Rasmussen and
Williams, 2006) are well-calibrated probabilistic models with generally reliable uncertainty
on small datasets. Deep kernel GPs (Patacchiola et al., 2020; Wilson et al., 2016b), which
combines neural network representations and GP models, have the potential to improve the
robustness of neural networks on small datasets. However, previous methods for training
these models often lead to unsatisfactory results due to overfitting or underfitting issues. This
chapter presents Adaptive Deep Kernel Fitting with Implicit Function Theorem (ADKF-IFT),
a novel framework for training deep kernel GPs by interpolating between meta-learning and
conventional deep kernel learning. This approach employs a bilevel optimisation objective,
with the resulting nested optimisation problem solved by the implicit function theorem (IFT).
We show that the proposed ADKF-IFT framework contains previous methods for training
deep kernel GPs as special cases. We find that ADKF-IFT is especially well-suited for low-

32 Meta-Learning Gaussian Processes for Data-Efficient Representation Learning

data tasks such as drug discovery, and demonstrate that it significantly outperforms previous
state-of-the-art methods on a variety of real-world few-shot molecular property prediction

tasks and out-of-domain molecular property prediction and optimisation tasks.

3.1 Motivation and Overview

Many real-world applications require machine learning algorithms to make robust predictions
with well-calibrated uncertainty given very limited training data. One important example is
drug discovery, where practitioners not only want models to accurately predict biochemical and
physicochemical properties of molecules, but also want to use models to guide the search for
novel molecules with desirable properties, leveraging techniques such as Bayesian optimisation
(BO) which heavily rely on accurate uncertainty estimates (Frazier, 2018). Despite the meteoric
rise of neural networks over the past decade, their notoriously overconfident and unreliable
uncertainty estimates (Szegedy et al., 2014) make them generally ineffective surrogate models
for BO. Instead, most contemporary BO implementations use Gaussian processes (GPs)
(Rasmussen and Williams, 2006) as surrogate models due to their analytically tractable and

generally reliable uncertainty estimates, even on small datasets.

Traditionally, GPs are fit on hand-engineered features (e.g., molecular fingerprints), which
can limit their predictive performance on complex, structured, high-dimensional data such
as molecules where designing informative features is challenging. Naturally, a number of
works have proposed to improve performance by instead fitting GPs on features learned by
a deep neural network: a family of models generally called Deep Kernel GPs. However,
there is no clear consensus about how to train these models: maximising the GP marginal
likelihood (Hinton and Salakhutdinov, 2007; Wilson et al., 2016b) has been shown to overfit
on small datasets (Ober et al., 2021), while meta-learning (Patacchiola et al., 2020) and
fully-Bayesian approaches (Ober et al., 2021) avoid this at the cost of making strong, often
unrealistic assumptions. This suggests that there is demand for new, better techniques for

training deep kernel GPs.

This chapter presents a novel, general framework called Adaptive Deep Kernel Fitting with
Implicit Function Theorem (ADKF-IFT) for training deep kernel GPs, which is especially
well-suited to small datasets. ADKF-IFT essentially trains a subset of the model parameters
with a meta-learning loss, and separately adapts the remaining parameters on each task using
maximum marginal likelihood estimation. In contrast to previous methods which use a single
loss for all parameters, ADKF-IFT is able to utilise the implicit regularisation of meta-learning
to prevent overfitting while avoiding the strong assumptions of a pure meta-learning approach
which may lead to underfitting. The key contributions of this chapter are summarised as

follows.

3.2 Preliminaries 33

1. As our main technical contribution, we present the general ADKF-IFT framework and its
natural formulation as a bilevel optimisation problem (Section 3.3.1), then explain how
the implicit function theorem (IFT) can be used to efficiently solve it with gradient-based

methods in a few-shot learning setting (Section 3.3.2).

2. We show how ADKF-IFT can be viewed as a generalisation and unification of previous
approaches based purely on single-task learning (Wilson et al., 2016b) or purely on
meta-learning (Patacchiola et al., 2020) for training deep kernel GPs (Section 3.3.3).

3. We propose a specific practical instantiation of ADKF-IFT wherein all feature extractor
parameters are meta-learned, which has a clear interpretation and obviates the need for
any Hessian approximations. We argue why this particular instantiation is well-suited to

retain the best properties of previously proposed methods (Section 3.3.4).

4. Motivated by the general demand for better GP models in chemistry, we perform an
extensive empirical evaluation of ADKF-IFT on several chemical tasks, finding that it

significantly improves upon previous state-of-the-art methods (Section 3.5).

3.2 Preliminaries

3.2.1 Few-Shot Learning

Few-shot learning (Vinyals et al., 2016) refers to learning on many related tasks when each
task has few labelled examples (Lake et al., 2011; Miller et al., 2000). It requires learning
algorithms to be able to adapt to unseen tasks given few labelled examples. Few-shot learning
algorithms often benefit from knowledge transfer among related low-data tasks, whereas
single-task learning algorithms can easily overfit or underfit in this setting. In the few-show
learning setup, one is given a set of training tasks D = {7}, (a meta-dataset) and some
unseen test tasks D, = {7, }. Each task 7 = {(z;, ;) }.\ is a set of points in the domain
X (e.g., space of molecules) with corresponding labels (continuous, categorical, etc.), and is
partitioned into a support set ST C T for meta-training and a query set Q7 = T \ S for
meta-testing. Typically, the total number of training tasks | D | is large, while the size of each
support set | S7 | is small. Models for few-shot learning are typically trained to accurately
predict unseen examples in the query set Q7 given labelled examples in the support set S+
for all tasks 7 € D during a meta-training phase, then evaluated by their prediction error on

Q.. given S, for unseen test tasks 7, € D, during a meta-testing phase.

34 Meta-Learning Gaussian Processes for Data-Efficient Representation Learning

3.2.2 Deep Kernel Gaussian Processes

Deep Kernels

Deep Kernel Gaussian Processes are GPs whose covariance function is constructed by first
using a neural network feature extractor f; with parameters ¢ € & to create feature rep-
resentations h = f,(z),h’ = f,(2') of the input points z, ', then feeding these feature
representations into a standard base kernel cy(h, ') (e.g., an RBF kernel) (Bradshaw et al.,
2017, Calandra et al., 2016; Hinton and Salakhutdinov, 2007; Wilson et al., 2016a,b). The com-
plete covariance function is therefore ky(x, ") == co(fs(x), f5(«')) with learnable parameters
1 = (60, ¢). Deep kernel GPs can be viewed as performing Bayesian inference for the last
linear layer of a neural network in the function space (Harrison et al., 2024; Lazaro-Gredilla
and Figueiras-Vidal, 2010; Ober and Rasmussen, 2019; Watson et al., 2021).

Deep Kernel Learning

Deep Kernel Learning (DKL) (Wilson et al., 2016b) is a single-task method for fitting a
deep kernel to a dataset. DKL jointly fits both the feature extractor parameters ¢ and base
kernel parameters 6 by maximising the GP marginal likelihood on a single dataset (i.e., DKL

essentially fits a neural network with a GP “head” to a dataset).

It is well known that neural networks will easily overfit to small datasets (Sarle, 1995). This
overfitting also happens in DKL, despite the fact that it fits the neural network parameters
using a type-II maximum likelihood approach: although early DKL papers suggested that the
“model complexity” term (as measured by the log determinant of the kernel matrix) in the GP
marginal likelihood objective as stated in Equation (2.14) would prevent this overfitting from
happening (Wilson et al., 2016b), recent follow-up work showed that this is not the case (Ober
et al., 2021) as a deep-kernel GP can simultaneously overfit to the training data and appear to

have a low “model complexity”.

Deep Kernel Transfer

Deep Kernel Transfer (DKT) (Patacchiola et al., 2020) is a meta-learning method for fitting a
deep kernel to a distribution of datasets. DKT jointly fits both the feature extractor parameters
¢ and base kernel parameters ¢ by maximising the expected GP marginal likelihood over a

distribution of datasets (i.e., a meta-dataset).

To mitigate the overfitting issue of DKL using meta-learning, DKT makes a very strong
assumption that different tasks in the task distribution are drawn from an identical GP prior
over functions. Explicitly, this means that the data generating process is assumed to have the

same noise level, same amplitude, and same ‘“‘characteristic lengthscale” for every task in the

3.3 Adaptive Deep Kernel Fitting with Implicit Function Theorem 35

meta-dataset, which is a very restrictive assumption violated by most real-world problems.
Taking drug discovery as an example, the drug properties in different datasets in a meta-dataset

may have

* highly varying noise levels, so modelling all tasks with the same amount of observation

noise will not be realistic;

* different output ranges and units for regression: for example, one task might have data in
the range 1-20 uM, while another might have 0-100% inhibition, meaning that a single
signal variance (kernel amplitude) will not model the data well;

* different “characteristic lengthscales”: for some tasks, structurally similar molecules
have very strongly correlated output labels, while for other tasks it is much weaker (i.e.,
there is much more variation in the labels of very similar molecules), suggesting that the

“characteristic lengthscale” will be different.

Inevitably, trying to fit such a mis-specified model will result in a set of compromised base
kernel parameters 6 which fit all datasets fine on average but do not fit each individual dataset

very well. This is the underfitting issue of DKT.

3.3 Adaptive Deep Kernel Fitting with Implicit Function

Theorem

3.3.1 The ADKF-IFT Framework for Training Deep Kernel GPs

Let © and ® respectively be the sets of base kernel and feature extractor parameters for a deep
kernel GP. Denote the set of all parameters by ¥ = © x ®. The key idea of the general ADKF-
IFT framework is to partition the parameters into two disjoint subsets ¥ = W,g,p¢ X Wypeqa,
where only a subset of the parameters 1),qapt € Wadape Will be adapted to each individual task by
minimising a train loss L7, with the remaining set of parameters Ve € Vinera meta-learned
during a meta-training phase to yield the best possible validation loss Ly on average over
many related training tasks (affer 1me 18 separately adapted to each of these tasks). This can

be naturally formalised as the following bilevel optimisation problem:

w;em = ar% min]Ep(T) [£V (¢meta7 ¢:dapt(wmeta> 87')7 T)]; (31)

SUCh that w:dapt(l/)metaa ST) - arg min £T(1/)meta7 ¢adapt7 ST) (32)
adapt
Equation (3.1) and Equation (3.2) are most easily understood by separately considering the

meta-learned parameters e, and the task-specific parameters ¢,qap. For a given task 7 and

36 Meta-Learning Gaussian Processes for Data-Efficient Representation Learning

an arbitrary value for the meta-learned parameters ¢y, in Equation (3.2) the task-specific
parameters Y,qqp are chosen to minimise the train loss L evaluated on the task’s support set
S. That is, Yaqap 18 adapted to the support set S of the task 7, with the aim of producing
the best possible model on S for the given value of 1)y, The result is a model with optimal
task-specific parameters w;dapt(wmeta, Sr) for the given meta-learned parameters)y, and task
7. The remaining question is how to choose a value for the meta-learned parameters e,
knowing that 1,4, Will be adapted separately to each task. In Equation (3.1), we propose to
choose era to minimise the expected validation loss Ly over a distribution of training tasks

p(T). There are two reasons for this choice as detailed below.

1. On any given task 7, the validation loss usually reflects the performance metric of
interest on the query set Q7 of 7 (e.g., the prediction error).

2. Since the same value of ¥, Will be used for all tasks, it makes sense to choose a value
whose expected performance is good across many tasks drawn from p(7). That is, ¥meta
is chosen such that a GP achieves the lowest possible average validation loss on the
query set Q7 of a random training task 7 ~ p(7T) after {,qap is adapted to the task’s
support set S.

In practice, Ynera Would be optimised during a meta-training phase using a set of training tasks
D to approximate Equation (3.1). After meta-training (i.e., at meta-test time), we make predic-
tions for each unseen test task 7, using the joint GP posterior predictive distribution as defined
in Equations (2.17) and (2.18) with optimal parameters 15,.;, and ¢, (Ve ST)

meta’

p(QZ’/f* | Q:* ’ ST*) wrtletav ¢:dapt(¢;etav ST*)) (33)

Note that the description above does not specify a particular choice of Wi, Wadapt; L1, Lv-.
This is intentional, as there are many reasonable choices for these quantities. Because of this,
we believe that ADKF-IFT should be considered a general framework, with a particular choice
for these being an instantiation of the ADKF-IFT framework. We give examples of this in
Section 3.3.3 and Section 3.3.4.

3.3.2 Efficient Meta-Training Algorithm

In general, optimising bilevel optimisation objectives such as Equation (3.1) is computationally
complex, mainly because each evaluation of the objective requires solving a separate inner
optimisation problem (3.2). Although calculating the hypergradient (i.e., total derivative)
of the validation loss £y with respect to the meta-learned parameters ., would allow

3.3 Adaptive Deep Kernel Fitting with Implicit Function Theorem 37

Algorithm 1 Exact hypergradient computation in ADKF-IFT

1: Input: a training task 7" and the current meta-learned parameters v,

2: Solve Equation (3.2) to obtain 1;q,, = Yygapt (Vmetas S77)
dﬁV(df’meta wadapl T) _ dLV(wmetaad)adaplaT,) ’
Ometa /l/};net‘uwdddpl and g2 - ad)adapt

9?2 Lr (¢metav¢adaplvs7")
8'¢Jadapt ad)‘;apt

5: Solve the linear system vH = g, for v

3: Compute g; =

’ /
wmeta ’wadapt

4: Compute the Hessian H =

/ ’
wmela ’wadapl

82 [:T (¢mela7¢adapl7$T/)
T

awadaptad’meta w:netdeaddpl

7: Output: the hypergradient JMVF =g —vP > Equations (3.4) and (3.5)

6: Compute the mixed partial derivatives P =

Equation (3.1) to be solved with gradient-based optimisation:

d,CV . 8£V + 8»CV 877D;<dapt

=) 3.4
d¢meta 87vbmeta aw:dapt a77Z)meta ()

Equation (3.4) reveals that this requires calculating aw"“dp‘ i.e.,how the optimal task-specific
parameters wadapt(¢meta, S7) change with respect to the meta-learned parameters ¢er,. Calcu-
lating this naively with automatic differentiation platforms would require tracking the gradient
through many iterations of the inner optimisation (3.2), which in practice requires too much

memory to be feasible. Fortunately, because ¢}, . is an optimum of the train loss £, Cauchy’s

adapt
Implicit Function Theorem (IFT) provides a formula for calculating

¢d a
o2 for an arbitrary

value of the meta-learned parameters 1)/ . and a given task 7"

meta

8w;kdapt N (aZ £T<¢metaa 77Z)adapt7 8’7’/) > - 82 ET (¢meta7 ¢adapta S’T’> (3 5)
a wmeta ! az/}adapta ¢;|(—japt awadaptawr—geta ’ ’ .
meta wmeld 7wadapl
where V3 = Vidapt(Vinewn» S77)- A full statement of the implicit function theorem in the

context of ADKF-IFT can be found in Appendix B.1. The only potential problem with

9? »CT(L/)mcm "Z’adapl ST) 4
= =22, This
8wadapta¢;dapl
computation can be done exactly if |W,qq| is small, which is the case considered in this

Equation (3.5) is the computation and inversion of the Hessian matrix

paper (as will be discussed in Section 3.3.4). Otherwise, an approximation to the inverse
Hessian (e.g., Neumann approximation (Clarke et al., 2022; Lorraine et al., 2020)) could be

used, which reduces both the memory and computational complexities to O(|¥|). Combining

dLy
dwmeta
exactly for a single task, as summarised in Algorithm 1. The meta-learned parameters ©yeta

Equation (3.4) and Equation (3.5), we have a recipe for computing the hypergradient

can then be updated with the expected hypergradient over p(7).

38 Meta-Learning Gaussian Processes for Data-Efficient Representation Learning

3.3.3 ADKEF-IFT as a Unification of Previous Methods

In prior work, the most common method used to train deep kernel GPs is to minimise
the negative log marginal likelihood (NLML) on a single dataset (optionally with extra
regularisation terms as will be discussed in Section 3.4.1). This is commonly referred to as
Deep Kernel Learning (DKL) (Wilson et al., 2016b):

Y* = arg min NLML (¢, S7) . (3.6)
(4

The most notable departure from DKL is Deep Kernel Transfer (DKT) (Patacchiola et al.,
2020), which instead proposes to train deep kernel GPs entirely using meta-learning, minimis-

ing the expected NLML over a distribution of training tasks:
Y* = arg min E,(7[NLML(%, T)]. (3.7)
¥

Interestingly, both DKL and DKT can be viewed as special cases of the general ADKF-IFT
framework. It is easy to see that choosing the partition to be Wi, = &, Vogape = ¥ and the
train loss L7 to be the NLML in Equation (3.1) and Equation (3.2) yields Equation (3.6):
DKL is just ADKF-IFT if no parameters are meta-learned. Similarly, choosing the partition to
be Ve = ¥, Wadape = & and the validation loss £y to be the NLML in Equation (3.1) and
Equation (3.2) yields Equation (3.7): DKT is just ADKF-IFT if all parameters are meta-learned.
This makes ADKF-IFT strictly more general than these two previous methods.

3.3.4 Highlighted ADKF-IFT Instantiation

Among the many possible variations of ADKF-IFT, we would like to highlight the following

instantiation:
* U = D, i.e., all feature extractor parameters ¢ are meta-learned across tasks.

* Vyapt = O, i.e., all base kernel parameters 6 (e.g., noise variance, lengthscales, ampli-

tude) are adapted to each task.

* The train loss L7 is chosen to be the negative log GP marginal likelihood evaluated on

the support set S, as is common practice for choosing GP base kernel parameters:

£T<¢metaa 77badapt7 ST) = - log p(S% | S5 y ¢meta7 ¢adapt)

| | (3.8)
= 5(ST) Ks. ST+§1ogdet(K5T) +

N,
‘ST log(2m),

Where KST = kd’melaﬂﬁadapt(5’7 S?) + O-QINST'

3.3 Adaptive Deep Kernel Fitting with Implicit Function Theorem 39

» The validation loss Ly is chosen to be the negative log joint GP predictive posterior
evaluated on the query set Q7 given the support set S+, also due to its common usage

for making predictions with GPs:

»CV(Q/)metaa 77ZJadapt> T) = - log p(g’ | Q%ﬁ ST) Qmeetaa wadapt)
= —logN(?7J’|KQT5TK§; Sy"KQT - K;TQTKS_';KSTQT)?
3.9)

. 2 .
where KQT = kiﬁmetaﬂlﬂadapt(Q?” Q%’) +o [NQT and KST Qr — kwmeta,wadapt(sg’v Q%’)
There are several benefits to this choice as detailed below.

1. This particular choice of loss functions has the advantage that the prediction procedure
during meta-testing as defined in Equation (3.3) exactly matches the meta-training

procedure, thereby closely following the principle of learning to learn.

2. The partition of parameters can be intuitively understood as meta-learning a generally
useful feature extractor f, such that it is possible on average to fit a low-loss GP to the
feature representations extracted by fy for each individual task. This is very similar to

previous transfer learning approaches.

3. Since most GP base kernels have only a handful of parameters, the Hessian in Equa-
tion (3.5) can be computed and inverted exactly during meta-training using Algorithm 1;

this removes any need for Hessian approximations.

4. The inner optimisation (3.2) for 1,4 1S computationally efficient, as it does not require
backpropagating through the feature extractor f.

More generally, ADKF-IFT combines DKL and DKT in a way that can potentially inherit the
strengths of both methods and the weaknesses of neither. By adapting the base kernel param-
eters 6 specifically to each task, it prevents underfitting due to varying ranges, lengthscales,
or noise levels between datasets. By meta-learning the feature extractor on many datasets, it
prevents overfitting as observed by Ober et al. (2021). This advantage is both theoretically
principled (by solving a bilevel optimisation objective using the implicit function theorem)
and empirically observable (as will be shown in Section 3.5).

The relationship between these methods are visualised in Figure 3.1. Panel (c) shows DKL,
which trains a separate deep kernel GP for each task. It is not hard to imagine that this can
lead to severe overfitting for small datasets, which has been observed empirically by Ober
et al. (2021). Panel (b) shows DKT, which prevents overfitting by fitting one deep kernel GP
for all tasks. However, this implicitly makes a strong assumption that all tasks come from an

identical distribution over functions, including the same noise level, same amplitude, and same

Meta-Learning Gaussian Processes for Data-Efficient Representation Learning

40

update

using implicit fu

nction theorem

2

T3

&) @) @l

eannE =0

— train loss

—» train loss

—» train loss

optimize Y gqap:
_— >

optimize Yagape |/
—raca,

optimize Y aaap: It
_
I

(a) Adaptive Deep Kernel Fitting with Implicit Function Theorem (ADKF-IFT)

optimize

-

s
&
&
o

N

(b) Deep Kernel Transfer (DKT)

Figure 3.1 A contrastive diagram illustrating the training procedures of ADKF-IFT, DKT and DKL. (a) ADKF-IFT meta-learns the feature
extractor parameters ¢ across all tasks and adapts the base kernel parameters 6 to each task under a bilevel optimisation framework. (b)

optimize Yaqap:

%
i |

1 .
, — train loss
1

]

1 .
I , — train loss
1

-.\\n&aﬁa = [0, 9]
(c) Deep Kernel Learning (DKL)

DKT meta-learns all parameters across all tasks. (c) DKL adapts all parameters to each task.

3.4 Related Work 41

characteristic lengthscales, which is unlikely to hold in practice. Panel (a) shows ADKF-IFT,
which allows these important parameters to be adapted, while still regularising the feature
extractor with meta-learning. We conjecture that adapting the base kernel parameters is more
appropriate given the expected differences between tasks: two related tasks are more likely to
have different noise levels or characteristic lengthscales than to require substantially different
feature representations (as discussed in Section 3.2.2).

3.4 Related Work

3.4.1 Deep Kernel GPs

ADKEF-IFT is part of a growing body of literature of techniques to train deep kernel GPs.
As discussed in Section 3.3.3, ADKF-IFT generalises DKL (Wilson et al., 2016b) and DKT
(Patacchiola et al., 2020), which exclusively use single-task learning and meta-learning,
respectively. Liu et al. (2020) and van Amersfoort et al. (2021) propose adding regularisation
terms to the loss of DKL in order to mitigate overfitting. These works are better viewed
as complementary to ADKF-IFT rather than alternatives: their respective regularisation
terms could easily be added to £ in Equation (3.2) to improve performance. However,
the regularisation strategies in both of these papers are designed for continuous inputs only,
limiting their applicability to structured data like molecules.

Interestingly, the preprint of Tossou et al. (2019) proposes an alternative way to meta-train
adaptive deep kernel GPs called ADKL-GP, where adaptation is performed by conditioning
the feature extractor on an embedding of the entire support set rather than adjusting a subset
of the kernel parameters as in ADKF-IFT. In general, their empirical results were not very
strong, and in our opinion the method is very prone to overfitting. This is because the training
objective for ADKL-GP is equivalent to the objective for DKT with an added contrastive loss,
weighted by a sensitive hyperparameter v (see Equation (13) of Tossou et al. (2019)), which
can be interpreted as balancing the degree of regularisation between two extremes:

e If v = 0, there is no regularisation of the task encoding network, making significant

overfitting to the meta-dataset possible. This is effectively equivalent to standard DKL.

* As v — 00, the regularisation becomes infinitely strong, causing the task embeddings
z7 to collapse, and thereby preventing them from transmitting any information about
specific datasets. With no information from z7 in this case, the objective is essentially
the same as that of DKT.

For this method to be useful it would appear that v would need to be carefully tuned to balance
between these extremes. Tossou et al. (2019) perform a grid search over all hyperparameters

42 Meta-Learning Gaussian Processes for Data-Efficient Representation Learning

including v € {0,0.01, 0.1} but find no consistent trend besides v > 0 being slightly helpful,
although the differences in performance were small. This suggests that the method may be
difficult to use in practice. ADKF-IFT however has no such tunable hyperparameters, which
we view as a significant strength. Instead, the balance between DKL and DKT is controlled by
selecting which parameters are adapted and meta-learned, which is much more interpretable
and makes it easier to use in practice.

3.4.2 Meta-Learning

ADKEF-IFT can also be viewed as a meta-learning algorithm comparable to many previously-
proposed methods (Chen et al., 2021, 2020; Garnelo et al., 2018; Lake et al., 2011; Liu et al.,
2021; Park and Oliva, 2019; Patacchiola et al., 2022; Tian et al., 2020; Triantafillou et al.,
2020; Vinyals et al., 2016; Wistuba and Grabocka, 2021). One distinguishing feature of
ADKF-IFT is that it is specially designed for deep kernel GPs, whereas most methods from
computer vision are designed exclusively for neural network models, which as previously
stated are unsuitable when reliable uncertainty estimates are required. Furthermore, many of
these algorithms such as ProtoNet (Snell et al., 2017) are designed principally or exclusively
for classification, while ADKF-IFT is suited to both regression and classification. Compared
to model-agnostic frameworks like MAML (Finn et al., 2017; Rajeswaran et al., 2019) which
meta-learn a common initialisation for adaptation of all parameters, ADKF-IFT meta-learns a

subset of parameters across tasks and adapts the rest of parameters to each task.

Modular meta-learning with shrinkage (Chen et al., 2020) shares some similarities with ADKF-
IFT: at a high level it also divides model parameters into meta-learned and adapted parameters,
and optimises the meta-learned parameters using the gradient of the validation loss after the
adapted parameters have been adjusted to minimise the training loss using IFT. However, there
are three main differences between Chen et al. (2020) and ADKF-IFT:

1. Chen et al. (2020) consider a model where the meta-learned parameters ¢ are the means
and variances of a Gaussian prior over model parameters, whereas ¢ is a subset of the
parameters of a deep kernel GP in ADKF-IFT.

2. Chen et al. (2020) consider the case where there are too many adapted parameters 6 to
form the exact Hessian in IFT. They instead use a conjugate gradient approximation.
Although some instantiations of ADKF-IFT could may this, in our highlighted version

the Hessian can be computed exactly, which we view as a significant advantage.

3. The goal of the method in Chen et al. (2020) is to learn which parameters should be
meta-learned, while in ADKF-IFT this must be pre-specified (and we give guidance for

doing so in a way that results in transferable meta-learned features).

3.5 Empirical Evaluation 43

3.4.3 Multi-Task GPs

ADKF-IFT can be considered as a method to learn multi-task GPs. The dominant approach
to this problem in prior works is to learn a shared kernel for all data points across all tasks,
transmitting information by explicitly modelling the covariance between data from different
tasks (Bonilla et al., 2007; Forrester et al., 2007; Kennedy and O’Hagan, 2000; Poloczek et al.,
2017; Swersky et al., 2013). The main difference between methods in this family is the exact
form of the kernel (Tighineanu et al., 2022), which is typically assumed to have a particular
structure (e.g., Kronecker product or weighted sum of simpler kernels). ADKF-IFT cannot
be naturally viewed in this way because the covariance between data points from separate
tasks is always zero; information is instead transmitted across tasks via a shared set of model
parameters. Therefore, we believe that ADKF-IFT is a significant departure from the dominant

paradigm in GP transfer learning.

3.4.4 Implicit Function Theorem in Machine Learning

The IFT employed in our work has been used in many previous machine learning papers in
various contexts, e.g., neural architecture search (Zhang et al., 2021), hyperparameter-tuning
(Bengio, 2000; Clarke et al., 2022; Lorraine et al., 2020; Luketina et al., 2016; Pedregosa,
2016), and meta-learning (Chen et al., 2020; Lee et al., 2019; Rajeswaran et al., 2019).

One challenge of applying IFT is the computation of the inverse Hessian. While earlier
work compute this explicitly (Bengio, 2000; Larsen et al., 1996) as in ADKF-IFT, recent
work employ various approximation techniques such as Neumann approximation (Clarke
et al., 2022; Lorraine et al., 2020), conjugate gradient (Chen et al., 2020; Pedregosa, 2016;
Rajeswaran et al., 2019; Wang et al., 2020), and the identity matrix (Luketina et al., 2016) to

retain computational tractability.

3.5 Empirical Evaluation

This section presents empirical evaluation results for the performance of the specific instantia-
tion of ADKF-IFT from Section 3.3.4. We choose to focus our experiments exclusively on
molecular property prediction and optimisation tasks because we believe that this application
would benefit greatly from better GP models: firstly because many existing methods struggle
on small datasets of size ~ 10? which are ubiquitous in chemistry, and secondly because many
tasks in chemistry require high-quality uncertainty estimates. First, we evaluate ADKF-IFT
on four commonly used benchmark tasks from MoleculeNet (Wu et al., 2018), finding that
ADKEF-IFT achieves state-of-the-art results on most tasks (Section 3.5.1). Second, we eval-
uate ADKF-IFT on the larger-scale FS-Mol benchmark (Stanley et al., 2021), finding that

44 Meta-Learning Gaussian Processes for Data-Efficient Representation Learning

Table 3.1 Statistics of four few-shot molecular property prediction benchmarks from Molecu-
leNet.

MoleculeNet benchmark task
Tox21 SIDER MUV ToxCast
#compounds 8,014 1,427 93,127 8,615

Statistic

#tasks 12 27 17 617
#training tasks 9 21 12 450
#test tasks 3 6 5 167

ADKEF-IFT is the best-performing method (Section 3.5.2). In particular, our results support the
hypothesis from Section 3.3.4 that ADKF-IFT achieves a better balance between overfitting
and underfitting than DKL and DKT. Finally, we show that the ADKF-IFT feature representa-
tion is transferable to out-of-domain (OOD) molecular property prediction and optimisation
tasks (Section 3.5.3). The detailed configurations of ADKF-IFT for all experiments considered
in this section are shown in Appendix B.2.

3.5.1 Few-shot Molecular Property Prediction on MoleculeNet

Benchmark and Baselines

We compare ADKF-IFT with two types of baselines on four few-shot molecular property
classification benchmark tasks (Tox21, SIDER, MUYV, and ToxCast) from MoleculeNet (Wu

et al., 2018). The statistics of these benchmark tasks are summarised in Table 3.1.

The first type of baseline methods train their feature extractors from scratch: Siamese (Koch,
2015), ProtoNet (Snell et al., 2017), MAML (Finn et al., 2017), TPN (Liu et al., 2019b),
ELGNN (Kim et al., 2019), IterRefLSTM (Altae-Tran et al., 2017) and PAR (Wang et al.,
2021). The second type of baseline methods fine-tune a pretrained feature extractor: Pre-GNN
(Hu et al., 2020), Meta-MGNN (Guo et al., 2021) and Pre-PAR (Wang et al., 2021). Pre-
ADKEF-IFT refers to ADKF-IFT starting from a pretrained feature extractor. All compared
methods in this section use GIN (Xu et al., 2019) as their feature extractors. The pretrained
weights for the methods of the second type are provided by Hu et al. (2020).

Evaluation Procedure

We follow exactly the same evaluation procedure as that in Guo et al. (2021); Hu et al. (2020);
Wang et al. (2021). The task-level metric is AUROC (area under the receiver operating
characteristic curve). We report the averaged performance over ten runs with different random

seeds for each compared method at the support set size 20 (i.e., 2-way 10-shot, as the support

3.5 Empirical Evaluation 45

Table 3.2 Mean test performance (AUROC%) with standard deviations of all compared
methods on MoleculeNet benchmark tasks at support set size 20 (i.e., 2-way 10-shot).

MoleculeNet benchmark task (#compounds)

Method
Tox21 (8,014) SIDER (1,427) MUV (93,127) ToxCast (8,615)

Siamese 80.40 + 0.35 71.10 +4.32 59.59 +5.13 -
ProtoNet 74.98 4+ 0.32 64.54 + 0.89 65.88 & 4.11 63.70 +1.26
MAML 80.21 £ 0.24 70.43 £ 0.76 63.90 £ 2.28 66.79 + 0.85
TPN 76.05+0.24 67.84 £0.95 65.22 + 5.82 62.74 & 1.45
ELGNN 81.21 £ 0.16 72.87+0.73 65.20 + 2.08 63.65 + 1.57

IterRefLSTM 81.10 £0.17 69.63 +0.31 45.56 £ 5.12 -
PAR 82.06+0.12 74.68+0.31 66.48 +2.12 69.72 +1.63
ADKF-IFT 8243 +060 67.72+121 9818+3.05 72.07+0.81
Pre-GNN 82.14 £ 0.08 73.96 4+ 0.08 67.14 £ 1.58 73.68 +0.74

Meta-MGNN 82.97 +0.10 75.43 £ 0.21 68.99 + 1.84 -
Pre-PAR 84.93+0.11 78.08+0.16 69.96 +1.37 75.12 4 0.84
Pre-ADKF-IFT 86.06 +0.35 70.95+0.60 95.74+0.37 76.224+0.13

sets in MoleculeNet are balanced). We did not perform 1-shot learning, as it is an unrealistic
setting in real-world drug discovery tasks. All baseline results are taken from Wang et al.
(2021).

Performance

Table 3.2 shows that ADKF-IFT and Pre-ADKF-IFT achieve the best performance on Tox21,
MUY, and ToxCast. In general, the larger the dataset is, the larger the performance gains of
our method over other baselines are, highlighting the scalability of our method. In particular,
our method outperforms all baselines by a wide margin on MUV due to the relatively large
amount of available compounds, but underperforms many baselines on SIDER due to a lack

of compounds.

Note that our method achieves near 100% AUROC on MUV. One possible cause is that the
MUYV dataset is extremely imbalanced with the positively labelled compounds tending to be
very similar to each other (Wang et al., 2024). This is because MoleculeNet is an old benchmark
with many known issues (Walters, 2023), including data leakage in the train/test splits and
presence of duplicate compounds. As a result, methods like ADKF-IFT which perform nearest-
neighbour comparison to examples in the support set could perform abnormally well.

46 Meta-Learning Gaussian Processes for Data-Efficient Representation Learning

3.5.2 Few-shot Molecular Property Prediction on FS-Mol

Benchmark

We further conduct evaluation on the FS-Mol benchmark (Stanley et al., 2021), which contains
a carefully constructed set of few-shot learning tasks for molecular property prediction. FS-
Mol contains over 5,000 tasks with 233,786 unique compounds from ChEMBL27 (Mendez
et al., 2019), split into training (4,938 tasks), validation (40 tasks), and test (157 tasks) sets.
Each task is associated with a protein target. The original benchmark only considers binary
classification of active/inactive compounds, but we additionally include the regression task for
the actual numeric activity target IC50 or EC50 in our evaluation as well, as it is a desired and

more preferred task to do in real-world drug discovery projects.

Baselines
We compare ADKF-IFT with four categories of baselines.

1. Single-task learning methods: random forest (RF), k-nearest neighbours (kNN), single-
task GP with Tanimoto kernel (GP-ST) (Ralaivola et al., 2005), single-task GNN
(GNN-ST) (Gilmer et al., 2017), deep kernel learning (DKL) (Wilson et al., 2016b).

2. Multi-task pretraining method: multi-task GNN (GNN-MT) (Corso et al., 2020; Gilmer
et al., 2017).

3. Self-supervised pretraining method: molecule attention transformer (MAT) (Maziarka
et al., 2020).

4. Meta-learning methods: property-aware relation networks (PAR) (Wang et al., 2021),
prototypical network with Mahalanobis distance (ProtoNet) (Snell et al., 2017), model-
agnostic meta-learning (GNN-MAML) (Finn et al., 2017), conditional neural process
(CNP) (Garnelo et al., 2018), deep kernel transfer (DKT) (Patacchiola et al., 2020).

The GNN feature extractor architecture f; used for DKL, PAR, CNP, DKT, and ADKF-IFT is
the same as that used for ProtoNet, GNN-ST, GNN-MT, and GNN-MAML in Stanley et al.
(2021). All multi-task and meta-learning methods are trained from scratch on FS-Mol training
tasks. MAT is pretrained on 2 million molecules sampled from the ZINC15 dataset (Sterling
and Irwin, 2015). The classification results for RF, KNN, GNN-ST, GNN-MT, MAT, ProtoNet,
and GNN-MAML are reproduced according to Stanley et al. (2021). Detailed configurations
of all baselines can be found in Appendix B.3.

3.5 Empirical Evaluation 47

0.35 0.5
0.30 0.4
0.25 0.3
& 0.20 0.2
o - @
o (0) ad
=
<10.15 : i 4 0.1
: —4— ADKF-IFT —— RF
/ | $— DKT +— MAT
0.10 y —— ProtoNet o kNN 0.0 |
B —4— NP —— GNN-ST —4— ADKFIFT —4— RF
0.05! ¢ —4— GNN-MAML < PAR 01 v +— DKT —4— GNN-MT
—4— GP-ST o DKL —— NP #— MAT
—— GNN-MT ¥ —4— GP-ST o DKL
0.00 —0.2
16 32 64 128 256 16 32 64 128 256
Support set size Support set size
(a) Classification (157 tasks) (b) Regression (111 tasks)

Figure 3.2 Mean performance with standard errors of all compared methods on all FS-Mol
test tasks.

Evaluation Procedure

The task-level metrics for binary classification and regression are AAUPRC (change in area un-
der the precision-recall curve) and R?_ (predictive/out-of-sample coefficient of determination),
respectively. We follow exactly the same evaluation procedure as that in Stanley et al. (2021),
where the averaged performance over ten different stratified support/query random splits of
every test task is reported for each compared method. This evaluation process is performed for
five different support set sizes 16, 32, 64, 128, and 256. Note that unlike MoleculeNet, the
support sets are generally unbalanced for the classification task in FS-Mol, which is natural as

the majority of the candidate molecules are inactive in drug discovery.

Overall Performance

Figure 3.2 shows the overall test performance of all compared methods aggregated over all
tasks. Note that RF is a strong baseline method, as it is widely used in real-world drug
discovery projects and has comparable performance to many pretraining methods. The results
indicate that ADKF-IFT outperforms all the other compared methods at all considered support
set sizes for the classification task. For the regression task, the performance gains of ADKF-
IFT over the second best method, namely DKT, get larger as the support set size increases.
Figure 3.3 and Figure 3.4 show the box plots for the classification and regression performances
of all compared methods on all FS-Mol test tasks, respectively. These plots are a disaggregated
representation of the results in Figure 3.2.

48

Meta-Learning Gaussian Processes for Data-Efficient Representation Learning

DKL

PAR
GNN-ST
kNN

MAT

RF
GNN-MT
GP-ST
GNN-MAML
CNP
ProtoNet
DKT
ADKF-IFT

—0.1 0.0 0.1 0.2

DKL

PAR
GNN-ST
kNN

MAT

RF
GNN-MT
GP-ST
GNN-MAML
CNP
ProtoNet
DKT
ADKF-IFT

oo oo

com o o

AAUPRC

(@) Ns,, =16

— [

—0.1 0.0 0.1 0.2 0.3 0.4 0.5

PAR
GNN-ST
kNN

MAT

RF
GNN-MT
GP-ST
GNN-MAML
CNP
ProtoNet
DKT
ADKF-IFT

AAUPRC

(c) Ns,. =64

0.0 0.1 0.2 0.3 0.4 0.5
AAUPRC

(e) Ns,. = 256

DKL

PAR
GNN-ST
kNN

MAT

RF
GNN-MT
GP-ST
GNN-MAML
CNP
ProtoNet
DKT
ADKF-IFT

DKL

PAR
GNN-ST
kNN

MAT

RF
GNN-MT
GP-ST
GNN-MAML
CNP
ProtoNet
DKT
ADKF-IFT

[
—

—0.1 0.0 0.1 0.2 0.3 0.4 0.5
AAUPRC

(b) Ns,. = 32

0.0 0.1 0.2 0.3 0.4 0.5
AAUPRC

(d) Ns,, =128

Figure 3.3 Box plots for the classification performance of all compared methods on 157

FS-Mol test tasks at different support set sizes.

3.5 Empirical Evaluation 49

DKL e o DKL | [T] bo o
i e MAT e oo
GNN-MT 1 [T | o o GNN-MT{ o o —{ 1 1 | o o
-
iR

MAT{ o oo

RF

co o me oo RE It eme o
o ooe @ o ST o o o0

GP-ST

CNP o

HI NP]
DKT HIT—— - DKT e
I

ADKF-IFT o ADKF-IFT e
08 06 —04 —02 00 02 04 06 06 —04 02 00 02 04 06 08
y v
R,
(a) NST* =16 (b) NST* =32

DKL o | [T] | oo DKL| o o oo b— [T
MAT! o o;—ED—¢ wom ® o MAT! o o om;—m—pmo
GNN-MT o | [T] fo o GNN-MT o0 o o—I—

E | o0 o RF o o }_[D—¢ o

GP-ST | [T] | oo GP-ST o —{
- NP o o e

ADKF-IFT T T ADKF-IFT ——

—0.75 —050 —025 000 025 050 0.75 -3 -2 —1 0 1
R? R?

() Ns,, =64 (d) Ns,, =128
RF —
GP-ST]
cnp —
DKT —
ADKFIFT —

—0.2 0.0 0.2 0.4 0.6 0.8

RF f

CNP

(e) Ns,. = 256

Figure 3.4 Box plots for the regression performance of all compared methods on 111 FS-Mol
test tasks at different support set sizes.

50 Meta-Learning Gaussian Processes for Data-Efficient Representation Learning

Table 3.3 Mean rank of performance for all compared methods on all FS-Mol test tasks.

(a) Classification (157 tasks) (b) Regression (111 tasks)
Support set size Support set size
Method Method

16 32 64 128 256 16 32 64 128 256
GNN-ST 11.29 11.53 11.75 11.85 12.19 MAT 760 745 726 7.06 7.19
kNN 10.89 10.48 10.33 10.15 9.37 GNN-MT 6.61 6.40 6.15 595 5.58
MAT 10.43 10.44 10.19 9.69 9.70 RF 5.00 447 4.16 3.72 3.56
RF 8.15 7.89 7.06 6.25 447 DKL 442 516 5.63 6.10 6.35
PAR 7.70 798 830 883 10.81 GP-ST 4.23 4.14 387 337 3.07
GNN-MT 733 718 7.08 6.59 6.53 CNP 3.88 4.45 495 573 647
DKL 7.28 749 T7.98 842 8.21 DKT 212 208 229 232 243

GP-ST 6.71 6.57 6.28 6.18 5.14 ADKF-IFT 2.12 1.86 168 174 1.36
GNN-MAML 6.36 6.92 7.42 7.89 8.90

CNP 5.00 581 6.36 691 7.78
ProtoNet 4.00 340 3.11 298 3.85
DKT 3.44 3.19 299 299 2.67

ADKF-IFT 241 212 214 226 1.38

Table 3.3 shows that ADKF-IFT achieves the best mean rank for both classification and
regression tasks at all considered support set sizes. The trends of these mean ranks are
consistent to the aggregated performance shown in Figure 3.2.

Ablation Study
We perform ablation study to verify the following two hypotheses.

1. The bilevel optimisation objective for ADKF-IFT is essential for learning informative
feature representations.

2. The performance gains of ADKF-IFT are not simply caused by tuning the base kernel
parameters 6 at meta-test time.

We consider three ablation models: DKT-NORM, DKT+ and ADKEF. The test performance
of these models are shown in Figure 3.5. For ADKF, we follow the ADKF-IFT training

scheme but assume %—fg = 0, i.e., updating the feature extractor parameters ¢ with the direct

gradient 88% rather than the hypergradient %. The results show that ADKF consistently
underperforms ADKF-IFT, indicating that the hypergradient for the bilevel optimisation
objective has non-negligible contributions to learning better feature representations. For
DKT+, we take a model trained by DKT and adapt the base kernel parameters ¢ on each task
at meta-test time. For DKT-NORM, the neural network features and labels are normalised
for each task. The results show that DKT+ and DKT-NORM do not improve upon DKT,
indicating that tuning the base kernel parameters at meta-test time or normalising the features

and labels is not sufficient for obtaining better test performance with DKT.

3.5 Empirical Evaluation 51

0.5
mmm ADKF-IFT
s ADKF

0.4) mmm DKT+
s DKT-NORM

%:30.3 DKT I
0.2
0.1
16 32 64 128 16 32 64 128 256
Support set size Support set size

(a) Classification (157 tasks) (b) Regression (111 tasks)

Figure 3.5 Mean performance with standard errors of ablation models on all FS-Mol test tasks.
ADKEF is like ADKF-IFT but assuming %—i = 0, 1.e., updating ¢ with the direct gradient aa%.
DKT+ is like DKT but tuning the base kernel parameters 6 during meta-testing. DKT-NORM
is like DKT but with normalised neural network features and labels.

Additionally, Appendix B.4 provides visualisations of the distributions of the optimal ADKF-
IFT base kernel parameters against the DKT optimal base kernel parameters, confirming that
ADKEF-IFT learns to make more informative predictions than DKT.

Statistical Comparison

We perform two-sided Wilcoxon signed-rank tests (Wilcoxon, 1992) to compare the perfor-
mance of ADKF-IFT and the next best method, DKT, and two ablation models DKT+ and
ADKE. The exact p-values from these statistical tests can be found in Table 3.4. The test results
indicate that their median performance difference is non-zero (i.e., ADKF-IFT significantly

outperforms these three methods) in the majority of cases.

Table 3.4 p-values from the two-sided Wilcoxon signed-rank test for statistical comparisons
between ADKF-IFT and DKT/DKT+/ADKEF. The null hypothesis is that the median of their
performance differences on all FS-Mol test tasks is zero. The significance level is set to
a = 0.05.

Support set size
16 32 64 128 256

Classification 1.4 x 10712 8.1 x10"'* 23x1012 1.0x108 3.4x10° 7
ADKF-IFT vs DKT - pooression 82x 1072 9.6x 1072 3.7x 1075 7.1x 105 9.8 x 10~7

Classification 3.2 x 10718 7.0x 10~ 2.3x 1013 1.2x 10~? 1.6 x 10~
ADKF-IFTvs DKT+ pooression 3.2x 1072 42x 107! 34x1075 52x107101.2x 105

Classification 1.7 x 1072 1.1 x107!' 48x107' 83x107! 1.6x1073
Regression 2.8 x 1073 4.2x107% 13x107% 41x10°% 1.3x10°°

Compared models Task type

ADKF-IFT vs ADKF

Table 3.5 Mean performance with standard errors of top performing methods on FS-Mol test tasks within each sub-benchmark (broken
down by EC category) at support set size 64 (the median of all considered support sizes). Note that class 2 is most common in the FS-Mol
training set (~ 1, 500 training tasks), whereas classes 6 and 7 are least common in the FS-Mol training set (< 50 training tasks each).

(a) Classification (AAUPRC)

Meta-Learning Gaussian Processes for Data-Efficient Representation Learning

52

FS-Mol sub-benchmark (EC category) Method

Class Description #tasks RF GP-ST ProtoNet DKT ADKF-IFT
1 oxidoreductases 7 0.156 £0.044 0.152+£0.040 0.137£0.037 0.145£0.040 0.160 £ 0.045
2 kinases 125 0.152+£0.009 0.161 £0.009 0.285+£0.010 0.282+£0.010 0.299 £0.010
3 hydrolases 20 0.229 £0.032 0.230£0.032 0.245£0.034 0.254 £0.034 0.262 +0.033
4 lysases 2 0.276 £0.182 0.284 £0.189 0.265£0.211 0.272£0.206 0.279 £ 0.201
5 isomerases 1 0.166 +0.040 0.212+0.052 0.172£0.044 0.204 £0.058 0.198 £ 0.046
6 ligases 1 0.149 £0.035 0.199+£0.028 0.170 £0.028 0.229 £0.013 0.231 £ 0.022
7 translocases 1 0.128 £ 0.039 0.109£0.049 0.099 £0.028 0.122 £0.022 0.109 £ 0.033

all enzymes 157 0.163 £0.009 0.171£0.009 0.271 £0.009 0.271 £0.010 0.285+0.010
(b) Regression Amev

FS-Mol sub-benchmark (EC category) Method

Class Description #tasks RF GP-ST CNP DKT ADKF-IFT
1 oxidoreductases 6 0.108 £0.087 0.103 +£0.076 —0.012+£0.011 0.098£0.078 0.116 £0.079
2 kinases 82 0.160 +0.019 0.162 4+ 0.022 0.127 +0.017 0.343 +£0.022 0.363 + 0.024
3 hydrolases 19 0.256 £ 0.058 0.267 £ 0.061 0.014 £0.015 0.295 £ 0.063 0.310 £ 0.062
4 lysases 2 0.418 £0.405 0.417+0.416 0.100 £0.068 0.440+£0.418 0.442 £ 0.403
5 isomerases 1 0.125 £ 0.077 0.086 £0.082 —0.012 £ 0.010 0.209 £0.113 0.226 £+ 0.063
6 ligases 1 0.1824+£0.040 0.2024+0.079 0.002 £0.004 0.277£0.035 0.279 £ 0.043

all enzymes 111 0.178 £0.019 0.181 £ 0.021 0.097 +0.014 0.321 +0.021 0.340 + 0.022

3.5 Empirical Evaluation 53

Table 3.6 Descriptions of four out-of-domain molecular design tasks. the datasets for the
molecular docking and material design tasks are sub-sampled from the much larger datasets
provided in DOCKSTRING (Garcia-Ortegon et al., 2022) and Harvard Clean Energy Project
(Hachmann et al., 2011), respectively. The datasets for the antibiotic discovery and antiviral
drug design tasks are taken from the antibiotic training set and the COVID Moonshot dataset
provided in Stokes et al. (2020) and Achdout et al. (2022), respectively.

Molecular design task Data source #compounds Target Target source
Docking &sr2) DOCKSTRING training set 2,312 binding score AutoDock Vina
Antibiotic & coliBw2s113) Antibiotic training set 2,335 relative growth screening
Antiviral sars-cov-2) COVID Moonshot 1,926 pIC50 Fluorescence experimental lab
Material (opv) Harvard Clean Energy Project 2,012 power conversion efficiency DFT

Sub-benchmark Performance

The tasks in FS-Mol can be partitioned into seven sub-benchmarks by Enzyme Commission
(EC) number (Webb et al., 1992), which enables sub-benchmark evaluation within the entire
benchmark. Ideally, the best method should be able to perform well across all sub-benchmarks.
Table 3.5 shows the test performance of top performing methods on all sub-benchmarks at
support set size 64 (the median of all considered support sizes) for both the classification and
regression tasks. The results indicate that, in addition to achieving best overall performance,
ADKEF-IFT achieves the best performance on all sub-benchmarks for the regression task and

on more than half of the sub-benchmarks for the classification task.

Meta-Testing Costs

We found that ADKF-IFT was ~ 2.5x slower than CNP, ProtoNet, and DKT, but still much
faster than GNN-MAML and PAR in terms of wall-clock time on a pre-defined set of FS-Mol
classification tasks during the meta-testing phase. However, we would like to point out that
meta-testing cost is not an important metric for the experiments considered in this section, as
real-time adaptation is not required in drug discovery applications, but could be of interest if
ADKEF-IFT were to be deployed in other settings. More details of the meta-testing costs of

different meta-learning methods can be found in Appendix B.5.

3.5.3 Out-of-Domain Molecular Property Prediction and Optimisation

Finally, we demonstrate that the feature representation learned by ADKF-IFT is useful not
only for in-domain molecular property prediction tasks but also for out-of-domain (OOD)
molecular property prediction and optimisation tasks. For this, we perform experiments
involving finding molecules with best desired target properties within given OOD datasets
using Bayesian optimisation (BO) with a GP surrogate model operating on top of compared

54 Meta-Learning Gaussian Processes for Data-Efficient Representation Learning

1.0
87 —
— -
2 1_’ 0.8 \'—-0—-0—4._._._._‘
)
g ol =
o - o
O o
9 ©0.61
Z \ g
£ ~o 2
T —-101 N\ =
— \ f O Sy < 0.4 H \ *“\\'
: '\ Moo, ~ i =k
Q4411 o i ~9. RS
o —111 & LA ~ Q *o.y
= A % o RS
» ."\ '_ \{
*"‘\."o---o»—o—o—»o-.'__. 027

~
=g

R Y
Soo-n -
—-121 ek —k— S =] b u_\.
Ak a gy, a i

0.0

0 2 4 6 8 10 12 14 16 18 20
The number of molecules queried

(a) Molecular docking

0 2 4 6 8 10 12 14 16 18 20

The number of molecules queried

(b) Antibiotic discovery

©
U

©
o

N
U

N
o

Optimum
Fingerprint

PAR representation

MAT representation
GNN-MT representation
CNP representation
ProtoNet representation
DKT representation

—=— ADKEF-IFT representation

o
n

o
o

u
U

Top-1 plC50 Fluorescence (1)
ul
o

&
w
Top-1 power conversion efficiency (1)

4.0 20 4 & 12 16 20 24 28 32 36 40
The number of molecules queried

0 3 6 9 12 15 18 21 24 27 30
The number of molecules queried

(c) Antiviral drug design (d) Material design

Figure 3.6 Mean top-1 target values with standard errors as a function of the number of
molecules queried for all compared feature representations on four out-of-domain molecular
optimisation tasks.

3.5 Empirical Evaluation 55

Table 3.7 Mean predictive performance (test NLL) with standard errors of a GP operating on
top of each compared feature representation on the four out-of-domain molecular design tasks.

Out-of-domain molecular design task
Feature

representation Molecular docking Antibiotic discovery Antiviral drug design Material design

Fingerprint 1.138 £0.014 1.669 £ 0.075 4.601 £ 0.086 1.091 £ 0.011
PAR 1.270 £0.019 2.185£0.115 4.840 + 0.086 1.283 £0.017
MAT 1.528 £0.028 2.390 £0.104 4.797 £ 0.088 2.198 £0.063

GNN-MT 1.994 £+ 0.050 3.692 £ 0.225 6.399 = 0.181 7.254 +£0.217
CNP 1.493 £ 0.028 2.537+£0.162 5.005 £ 0.086 1.741 £+ 0.043

ProtoNet 1.147 £0.013 1.615 £ 0.094 5.060 + 0.086 1.032 £ 0.009
DKT 1.167 £ 0.012 1.602 £ 0.073 4.975 £ 0.092 1.026 + 0.009
ADKF-IFT 1.137 £ 0.011 1.496 + 0.043 4.781 + 0.087 0.996 + 0.007

feature representations. We compare them on four representative molecular design tasks
(Achdout et al., 2022; Garcia-Ortegén et al., 2022; Hachmann et al., 2011; Stokes et al., 2020)
outside of FS-Mol, as summarised in Table 3.6. For the GP surrogate model, we use the
Tanimoto kernel for the fingerprint representation (with radius 2 and 2,048 bits based on
count simulation) and Matérn-5/2 kernel without automatic relevance determination (ARD)
but with a log-normal prior over the lengthscale centred at the median heuristic initialisation
(Garreau et al., 2017) for all the other compared feature representations. We use the expected
improvement (EI) acquisition function (Jones et al., 1998) with a query-batch size 1 for BO.
We re-fit the base kernel parameters using all available data points at the beginning of each BO
iteration. All compared feature representations are extracted using the models trained on the
FS-Mol dataset from scratch in Section 3.5.2, except for the pretrained MAT representation
and the fixed fingerprint representation. We repeat each BO experiment 20 times, each time
starting from 16 randomly sampled molecules from the worst ~ 700 molecules within the
dataset. Figure 3.6 shows that the ADKF-IFT representation enables fastest discovery of top
performing molecules for the molecular docking, antibiotic discovery, and material design
tasks. For the antiviral drug design task, although the ADKF-IFT representation underperforms
the MAT and GNN-MT representations, it still achieves competitive performance compared to
other baselines.

Table 3.7 explicitly reports the regression predictive performance of a GP operating on top of
each compared feature representation for these four out-of-domain molecular design tasks.
The configuration of the GP is the same as that in the BO experiments. We report test negative
log likelihood (NLL) averaged over 200 support/query random splits (100 for each of the
support set sizes 32 and 64). The results show that the ADKF-IFT representation has the best
test NLL on the molecular docking, antibiotic discovery, and material design tasks, and ranks

second on the antiviral drug design task.

56 Meta-Learning Gaussian Processes for Data-Efficient Representation Learning

3.6 Discussion

In this chapter, we proposed Adaptive Deep Kernel Fitting with Implicit Function Theorem
(ADKF-IFT), a novel framework for fitting deep kernels that interpolates between meta-
learning and conventional deep kernel learning. ADKF-IFT meta-learns a feature extractor
across tasks such that the task-specific GP models estimated on top of the extracted feature
representations can achieve the lowest possible prediction error on average. ADKF-IFT is
implemented by solving a bilevel optimisation objective via implicit differentiation. We
showed that ADKF-IFT is a unifying framework containing DKL and DKT as special cases.
We demonstrated that ADKF-IFT learns generally useful feature representations, achieving
state-of-the-art performance on a variety of real-world few-shot molecular property prediction
tasks and on out-of-domain molecular property prediction and optimisation tasks, outperform-
ing a wide range of single-task, multi-task, pre-training, and meta-learning methods. We
believe that ADKF-IFT could potentially be an important method to produce well-calibrated
models for fully-automated high-throughput experimentation in the future.

Having said that, one potential factor that could limit the use case of ADKF-IFT is that it
requires a meta-dataset of many related tasks for meta-training the feature extractor, which
is not always available in practice. Furthermore, the inner optimisation procedure is a major
bottleneck in ADKF-IFT since it needs to be performed until convergence in every training
and inference step. One way to make the training and inference procedure more efficient is to
amortise the inner optimisation with a learned task embedding of the support set through a
neural network set function. However, we found that learning informative task embeddings
was difficult in practice since the aggregation step in set functions tend to cause information
loss, which matches the observations in prior work (Garnelo et al., 2018; Tossou et al., 2019;
Zaheer et al., 2017).

In the next chapter, we will further investigate the theoretical properties of neural network
representations learned across multiple tasks, particularly focusing on recovering canonical
feature representations from observed data that align with the ground-truth underlying data

generating process.

Chapter 4

Probabilistic Multi-Task Regression for Iden-
tifiable Representation Learning

This chapter is based on Chen et al. (2024a):

* Wenlin Chen*, Julien Horwood*, Juyeon Heo, José Miguel Herndndez-Lobato.
Leveraging Task Structures for Improved Identifiability in Neural Network
Representations. Transactions on Machine Learning Research (TMLR), 2024.

Both co-first authors (*) contributed equally to method development, code implementa-
tion, experimentation and manuscript writing under the supervision of the last author.
Moreover, I proved all theorems for this work.

J

In the previous chapter, we demonstrated that learning a shared feature representation across
multiple tasks combined with an adaptive probabilistic regression head for each task could be
useful for achieving state-of-the-art empirical results in various low-data downstream tasks,
including few-shot molecular property prediction and optimisation tasks. This chapter further
investigates the theoretical properties of neural network representations learned across multiple
tasks, showing that canonical representations of the data may be recovered in the multi-task
learning setting by explicitly modelling the task distribution via a probabilistic approach. In
such cases, we show that linear identifiability is achievable in the general multi-task regression
setting. Furthermore, we show that the existence of a task distribution, which defines a condi-
tional prior over latent factors, reduces the equivalence class for identifiability to point-wise
permutations and scaling of the true latent factors. This is a much stronger result than the
linear identifiability result and block-wise permutation identifiability result in prior work. Cru-
cially, when we further assume an underlying structure over these tasks, our approach enables

simple maximum marginal likelihood optimisation for recovering canonical representations

58 Probabilistic Multi-Task Regression for Identifiable Representation Learning

from the linearly identifiable representations obtained in the multi-task regression neural
network. Empirically, we find that this straightforward probabilistic modelling procedure
enables our method to outperform previous identifiable representation learning approaches for

both synthetic data and real-world molecular data.

4.1 Motivation and Overview

Multi-task regression is a common problem in machine learning, which naturally arises in
many scientific applications such as molecular property prediction (Stanley et al., 2021)
and machine learning force fields (Jacobson et al., 2023). Despite this, most deep learning
approaches to this problem attempt to model the relationships between tasks through heuristic
approaches, such as fitting a shared neural network via end-to-end training, in an attempt to
capture the joint structures between tasks. Beyond lacking a principled approach to modelling
task relationships, these approaches fail to account for how we may expect the latent factors'
for related tasks to change. This chapter demonstrates that by leveraging certain assumptions
about the relationships between the latent factors of the data across tasks, in particular that
they vary in their causal and spurious relationships with the target variables, we can recover
the canonical latent factors up to permutations and scaling.

A common assumption in the causal representation learning literature, known as the sparse
mechanism shift hypothesis (Perry et al., 2022; Scholkopf, 2022; Scholkopf et al., 2021), states
that changes across tasks arise from sparse changes in the underlying causal mechanisms.
While we do not operate directly on structural causal models, our result arises by similarly
considering the implications of sparse changes in the causal graph defining a multi-task learning
setting. We accomplish this by first extending the theory of identifiability in supervised learning
to the multi-task regression setting for identifiability up to linear transformations (i.e., weak
identifiability). We then propose a new probabilistic approach to identifying neural network
representations up to permutations and scaling (i.e., point-wise identifiability), by leveraging
the assumed causal structures of the underlying latent factors for each task. We empirically
validate our model’s ability to recover the ground-truth latent structure of the data both in
simulated settings where data is generated from our model and for real-world molecular data.
This contrasts with current state-of-the-art approaches such as Khemakhem et al. (2020a); Lu
et al. (2022), whose assumptions also fit our assumed data generating process but which are
difficult to train effectively and only identifiable up to block permutations and scaling of the
sufficient statistics of their exponential family priors. The key contributions of this chapter are

summarised as follows.

"'We will use the terms “latent factors/variables” and “(data/feature) representations” interchangeably.

4.2 Preliminaries and Related Work 59

1. In contrast to prior work (Fumero et al., 2023; Lachapelle et al., 2023) which relates
meta/multi-task learning to identifiability via explicit sparsity constraints, this work
expands these conceptual connections beyond sparsity constraints by considering the
shared causal structure between tasks. This significantly reduces the number of tasks

needed to recover the true representations.

2. Our method extends previous identifiability results by relaxing the requirement of
energy-based parametrisation for the likelihood (Corollary 4.3.3) and resolving the

point-wise indeterminacies of the latent factors (Theorem 4.3.5).

3. Our model extends the applicability of conditional prior models to discriminative settings
at test time, since our identifiability result does not require conditioning on the target

variable during inference.

4. To our knowledge, our approach is the first to propose a conditionally factorised prior
model which can achieve identifiability via optimising the exact marginal likelihood.
This leads to significantly improved empirical identifiability results in our experiments

with synthetic and real-world data despite the probabilistic assumptions of our model.

5. While many works have shown that spurious correlations are a failure case of deep
learning and focus on eliminating them (Arjovsky et al., 2019; Eastwood et al., 2022;
Kirichenko et al., 2023; Krueger et al., 2021; Lu et al., 2022; Rojas-Carulla et al., 2018),
we leverage spurious features to improve the robustness of learned representations in the

multi-task regression setting through our identifiability results.

4.2 Preliminaries and Related Work

4.2.1 Disentanglement and Independent Component Analysis

The notion of optimising for disentangled representations gained traction in the recent unsu-
pervised deep learning literature when it was proposed that this objective may be sufficient to
improve desirable attributes such as interpretability, robustness, and generalisation (Bengio
et al., 2013; Chen et al., 2016; Higgins et al., 2017). However, the notion of disentanglement
alone is not intrinsically well-defined, as there may be many disentangled representations
of the data which are seemingly equally valid. Thus, it is not clear apriori that this crite-
rion is sufficient to achieve the above desiderata (Locatello et al., 2019). In the identifiable
representation learning literature, the correct disentangled representation is assumed to be
the one corresponding to the ground-truth data generating process. Thus, what is required
is an identifiable representation, which must be equivalent to the causal one for sufficiently
expressive model classes. In the linear case, identifiability results exist in the classical literature

60 Probabilistic Multi-Task Regression for Identifiable Representation Learning

for independent component analysis (ICA), which requires non-Gaussian assumptions on the
sources for the data (Comon, 1994; Herault and Jutten, 1986).

4.2.2 Conditional Prior Models for Non-Linear ICA

Many extensions of ICA to the non-linear case have been proposed, together with significant
theoretical advances. In particular, Hyvarinen et al. (2019) extend this by assuming a condi-
tionally factorised prior over the latent factors given some observed auxiliary variables, and
propose a contrastive learning objective for recovering the inverse of the function which gener-
ated the observations. Identifiable VAE (iVAE) (Khemakhem et al., 2020a) further extends
this to the setting of noisy observations, drawing connections with variational autoencoders
(Kingma and Welling, 2013) and enabling direct optimisation via a variational objective.
Specifically, iVAE replaces the standard Gaussian prior distribution p(z) over the latent factors
(which are invariant to rotations) with a learnable conditional Gaussian distribution p(z|u)
whose mean and variance depends on an auxiliary variable u concurrently observed with the
data x, such as the label y or time index 7 in a time series. Lachapelle et al. (2022) demonstrate
that strong identifiability results remain achievable under weaker conditions on the sufficient
statistics of the prior if the data generating process implies that the latent factors are governed
by sparse mechanism shifts. Invariant causal representation learning (iCaRL) (Lu et al., 2022)
derives analogous results to iVAE for the case where the prior over the latent factors is a more
general non-factorised exponential family distribution, which aligns the model assumption
with their assumed causal graph for the underlying data generating process. However, the
complex nature of the non-factorised prior in iCaRL requires score matching, which is difficult
to optimise in practice. Khemakhem et al. (2020b) explore general conditions for identifiability
in energy-based models, and introduce the notion of linear identifiability. This is expanded
upon in the context of classification models in Roeder et al. (2021), showing that the represen-
tations obtained via the final hidden layer of a neural network may be identifiable up to linear
transformations when conditioning on the label set. The works of Hilvi et al. (2021); Morioka
et al. (2021) both obtain strong identifiability results by exploiting specific temporal or spatial
structure in the encoded latent factors and modelling the joint distributions as dynamical
systems, however their models do not translate well to the static setting, and their identifiability
results remain restricted to non-linear coordinate-wise transformations of the latent variables.
While Hyvirinen and Pajunen (1999); Khemakhem et al. (2020a) show that identifiability is
not achievable without any form of conditioning in the prior, Kivva et al. (2022); Willetts and
Paige (2021) recently extended the results in unsupervised generative models to the case of
models with mixture model priors. This can be seen as providing analogous identifiability
results to prior methods using conditionally factorised priors, without assumptions on the

observability or the dimensionality of the conditioning variable. Nonetheless, these results do

4.3 Identifiable Multi-Task Representation Learning 61

not apply to the exact likelihood, and it remains unclear to what extent the practical consistency
and identifiability is achievable when optimising a surrogate variational objective.

4.2.3 Structural Approaches to Identifiability

In contrast, Brady et al. (2023) discuss identifiability results which arise from assumptions on
the structure of the mixing function, specifically targeting dual objectives of compositionality
with respect to partitions of the latent factors and invertibility of the mixing function. Thus,
no distributional assumptions are made on the prior. While this approach has similarities
with our proposal by introducing assumptions on how partitions of the latent space evolve
with respect to well-defined objects, we propose a general setting which is not restricted
to representation learning in visual scenes. Furthermore, by formalising these assumptions
within our probabilistic model, we eliminate the need for auxiliary regularisation terms in our

optimisation objective.

Recent work (Fumero et al., 2023; Lachapelle et al., 2023) has expanded this area of research
to consider the multi-task and meta-learning settings, and thus investigate the connections
between identifiability and the structure of the learning problem itself. However, their approach
to achieving permutation-identifiable representations relies on introducing heuristic sparsity
constraints, such as entropy and Ls-norm regularisers, within a bilevel optimisation objective,
which turns out to be difficult to solve both in theory and in practice (Sinha et al., 2017).
In addition, their approaches are less applicable in practice since a huge number of tasks
are required (more than 10° in their experiments). This contrasts with the straightforward,

principled and task-efficient optimisation objective arising from our probabilistic model.

4.3 Identifiable Multi-Task Representation Learning

4.3.1 Problem Formulation

The assumptions of the ground-truth data generating process considered in this chapter are
encapsulated in the causal graph shown in Figure 4.1, which closely follows the assumptions
made in Lu et al. (2022). Note that the input data z € X C R, the target variable’
y € Y = R and the task index variable 7 € {1,--- , N, } are observed variables, and the latent
factors 2 € Z = R% (d, < d,) are unobserved variables. We assume that z is generated by
transforming some (unobserved) ground-truth latent factors z* with some unknown injective

mixing function f, : Z — X, i.e., x = f.(z*). To incorporate the sparse mechanism shift

2Without loss of generality, we assume that the target variable is zero-centred, i.e., E(y) = 0. In practice, this
can be achieved by standardising the target variable y.

62 Probabilistic Multi-Task Regression for Identifiable Representation Learning

Figure 4.1 Assumed causal graph for the underlying data generating process. For each task 7,
we assume that the input data x are generated from the latent factors z = (z., z5). The target
variable y is generated by causal latent factors z., and z are spurious latent factors caused
by y. The partition of causal and spurious latent factors can potentially vary across tasks.
In molecular property prediction tasks, x corresponds to a molecule, y corresponds to the
molecular property to be predicted (e.g., toxicity) in each task 7, and z are the latent factors
that control the presence or absence of different substructures in the molecule .

hypothesis across tasks, we further assume that each task 7 has its own partition of the ground-
truth latent factors z* = (z¥, z¥) into a set of causal latent factors z; and a set of spurious latent
factors 2z, and such partitions potentially vary across tasks. The target variable y is assumed
to be a weighted sum of the causal latent factors z., i.e., y = (wji)Tz*, where w} € R are the
ground-truth regression weights for task 7 which assign zero weights for the spurious latent
factors z,. Note that there may be latent factors that are uncorrelated with y in some tasks,
which can be included within z; but with zero regression weights. The spurious latent factors
zs are assumed to be generated from the target variable y with a different linear correlation
function 2z, = y7, in each task 7. Our goal is to recover the unobserved ground-truth latent
factors z* given an empirical task distribution p(7) over IV, training tasks and an empirical

data distribution p,(z, y|7) for each task indexed by 7 € {1,--- , N, }.

Overall, our proposed method consists of two stages as illustrated in Figure 4.2. In the first
stage (yellow box), we jointly train a multi-task regression network (MTRN) with a feature
extractor shared across tasks and N, task-specific linear heads using the standard maximum
likelihood estimation (MLE) method. We show that upon convergence, the representations
learned by the feature extractor are identifiable up to some invertible linear transformation.
In the second stage (green box), we use the assumed causal structure across tasks to define a
conditional prior over the underlying independent latent factors. We show that this multi-task
linear causal model (MTLCM) enables simple maximum marginal likelihood learning for
recovering the linear transformation in the representations obtained in the first stage, which
reduces the identifiability class to permutations and scaling of the ground-truth latent factors
(i.e., point-wise), and automatically disentangles and identifies the causal and spurious latent

factors of the target variable from the learned representations.

63

4.3 Identifiable Multi-Task Representation Learning

‘3urreds pue suoneinuad 0) AI[IqeYIIUAPI J0J SSB[O ddudeAInba ay) onpax
0} (INDTLIN) [epow [esned Jeaur] ysel-nnu e asodoid 1oylny pue uonewrojsueny reaur o) dn (suonejussaidar eiep 9°1) s10)oBJ JUAR|
YInn-punoi3 oy} I9A0931 ued (NY.LIA) YI0MIQU UOISSAITI YSe}-N[NW © JBY) MOYS A\ "UONOUNJ SUIXTW SWOS YIIM SI0JOB] JUL] YINI}-punoid
oy Surwojsuer) Aq paure)qo St ejep Indul 9y} Jey) SWNSSE 9A\ "SI0J0B] Jule] snoLinds pue [esned Uaam)aq 9)JeNUAISIJIP 0) PAsn I8 SINO[0))

"S1019BJ JUIJR[PAIIA0IAI puB YINN-punois 3y} Jo suonisod ay) yoen 03 pasn are sadeys poyiow pasodoid 1o jo mopprom Y[, 74 231

(NOTLIN) (NILIN)
[PPOJA [BSNE)) JedUI] MSBL-DNJA YI0M)IN UOISSAISIY YSeL-DINIAI
AV Yo 00Q0 — @ @00 wwuwpweo SOUTR -

uoneuriojysue.ry
aeauy| sjudje snornds [
01 dn uoneoyNUIP[

_”__H__”_‘.O suoyenuLIad o) DODO AI@...OOO .O-_”__H__”_ "
dn uonesynuopy sjuadje] esned W
Iyafam v ﬁﬂ syse],
2700 QOCO ey —©-00® OQOUR =
paieys
WO @ LooQ —Q--0®0 OOV -
Y,_V = z:z33ers (x) ®y = y:1 =8e1s «
J1039€J Jud)e| $.10)9€J Jude| X d[qeLIEA ss3d01d Sunerdudd .Z $10)9eJ Judje|
J[qeyNUIPI ISIM-JuIod PaIIA0INY J[qeYHUIPI A[LEIUI] PAIIA0IY ndut paAIsqO Blgp umowyu IN0-PUnoI3 paAIdsqou)

64 Probabilistic Multi-Task Regression for Identifiable Representation Learning

4.3.2 Stage 1: Multi-Task Regression Network

In the first stage, we train a multi-task regression network (MTRN) to recover the ground-truth

latent factors up to some invertible linear transformation.

Let §y.0, (z) == w] hy(z) be the output of an MTRN for task 7, where w, € R% are the
regression weights in the linear head for task 7, and hg4(z) € R% is the data representation
produced by the feature extractor i, shared across all tasks with learnable parameters ¢. As
in typical deep non-linear regression settings, the likelihood is assumed to be a conditional

Gaussian distribution:
po(ylz,) = N (YlGsw, (), 07.), 4.1)

2

where the mean is parameterised by an MTRN, the variance is fixed to some constant o7, and

0 = (¢, wy,--- ,wy,) denotes all parameters in the MTRN.

We first define linearly identifiable (or weakly identifiable) representations in the multi-task
regression setting.

Definition 4.3.1 (Linear identifiability of multi-task learning). Let 6 = (¢, {w,}27,) and
0 = (¢, {w.}27)) be any two sets of multi-task regression model parameters. Then, the
data representations are linearly identifiable or weakly identifiable if there exists an invertible
matrix A € R%*% sych that

p9<y’l’77> :pﬁ’(y|‘r77—)7 VT7I,y — hd)(x) - Ahd)’(x) (42)

We show that data representations of MTRN are linearly identifiable if we have access to a
set of sufficiently diverse tasks measured by the linear dependencies among the regression
weights in their linear heads.

Theorem 4.3.2. Let 0 := (¢, {w, 1)) and 0" == (¢', {w’.}"7,) be any two sets of multi-task

regression model parameters such that

p9<y’l’77> :pﬁ’(y|x77—)7 Vﬂ%y' (43)

Assume that Span(Im(hy)) = R%, i.e., the vectors in the image of the feature extractor h
span the whole R%. Suppose that there exist d, tasks {7;}5=, C {1, , N,} such that the set
of the regression weights {w., ?;1 are linearly independent. Then, the data representations of
the MTRN are linearly identifiable.

The proof of Theorem 4.3.2 can be found in Appendix C.1.

4.3 Identifiable Multi-Task Representation Learning 65

Following standard practice, we train the MTRN via maximum likelihood estimation (MLE):

0 = arg (gnax Ep(r)pa(eyir) 10 po(ylz, 7). 4.4)

Using Theorem 4.3.2, it is straightforward to show that MTRN trained with MLE can recover
the ground-truth data representations up to some invertible linear transformation.

Corollary 4.3.3. Let h, : X — Z be the ground-truth mapping from input data to the ground-
truth latent factors, i.e., z* = h,(z). Assume that Span(Im(h,)) = R%. Suppose that there
exist d, tasks {;}%, C {1,---, N,} such that the set of ground-truth regression weights
{w;}fil are linearly independent. Assume that Equation (4.4) has a unique solution and that

the optimisation procedure for Equation (4.4) converges to the optimal predictive likelihood

ps(yle, 7) = N(yl(w]) ha(), 07,) (4.5)

under standard regularity conditions for MLE estimators (Gurland, 1954), i.e.,

py(g’l','f_) :p*(y‘va)a VT,ZL',y. (46)

Then, the feature extractor hy is guaranteed to recover the ground-truth latent factors z* up

to some invertible linear transformation A, i.e., hy(x) = A.h. ().

Corollary 4.3.3 essentially states that the effective number of tasks defined by the number of
independent ground-truth linear heads at least needs to be the same as the number of latent
dimensions d, to guarantee linear identifiability in the multi-task regression setting.

Unlike Roeder et al. (2021) which requires energy-based parametrisation of the output layer,
our results are compatible with the more commonly used Gaussian likelihood. Moreover,
while Lachapelle et al. (2023)[Proposition 2.2] prove a similar proposition on MLE invariance
to linear feature transformations, their proposition is built upon their Assumption 2.1 that the
learned feature extractor hy is linearly equivalent to the ground truth feature extractor h,.
However, they do not specify under what conditions this assumption will hold for the MLE
objective; they only specify conditions for their bilevel optimisation objective with a sparsity
regulariser in their Section 3. In contrast, our Corollary 4.3.3 explicitly reveals such conditions
for MLE, i.e., Span(Im(h.)) = R% and the existence of d, linearly independent ground-truth

task-specific regression weight vectors {w}. d-

4.3.3 Stage 2: Multi-Task Linear Causal Model

In the second stage, we freeze the feature extractor hy learned in the first stage and denote its
representations by h = hy (). Corollary 4.3.3 suggests that h = A,z* for some invertible

66 Probabilistic Multi-Task Regression for Identifiable Representation Learning

matrix A,. We propose a multi-task linear causal model (MTLCM) to recover the ground-truth
latent factors z* up permutations and scaling from 5 based on our assumed causal graph in
Figure 4.1. The core idea of the MTLCM is to model the change in the causal and spurious

latent factors across tasks with learnable task-specific parameters.

Let ¢; = {c., 7.} be a collection of task-specific variables associated with task 7, which are
free parameters to be learned from data, where ¢, € {0, 1}% are the causal indicator variables
which determine the partition of the latent factors z = (z., z;) for the given task 7 (i.e., ¢, ; = 1
indicates that z; is a causal latent factor in task 7, and ¢, ; = 0 indicates that z; is a spurious
latent factor in task 7), and v, are the linear coefficients used to generate the spurious latent
factors z, from y in task 7.

Conditionally Factorised Structured Prior

Following the standard setting of generative modelling, the prior distribution over causal latent

factors z, are assumed to be a standard Gaussian distribution:
pC(Zc|T) :N(ZC|07I)7 (47)
which depends on the task variable 7 since the causal indicator variable c, that determines

which subset of latent factors are causal varies across tasks.

According to the assumed data generating process, the target variable y is a linear function
of the latent data representations z. Following the common setting for the last layer of a
non-linear regression neural network, we assume that y is generated from z. via a linear

Gaussian model with the regression weights w, masked by the causal indicators c;:
pC(y’anw‘r?T) :N<y’(w7' @CT)TZ,O;)7 (48)

and that the spurious latent factors z, are generated from y via another linear Gaussian model
with regression weights v, :

pe(zsly, 7) = N (zs|yyr, 021). (4.9)

Since no prior knowledge of the regression weights w, is assumed, we marginalize out w,
from p¢(y|z., w,, T) over a non-informative prior p,,(w,). This leads a structured conditional

prior that factorises over all latent factors z given y and 7:

pe(2ly,) = pe(2e|m)pe 25|y, 7) (4.10)
= N(zla,, A\,), 4.11)

4.3 Identifiable Multi-Task Representation Learning 67

where the mean a, and covariance A, can be compactly expressed as follows:

ar =Yy © (1 - CT)a

(4.12)
A, = diag(c?(1 — ¢;) + ¢;).

A detailed derivation of this conditionally factorised prior can be found in Appendix C.3.

Linear Gaussian Likelihood

Since the data representation h learned by MTRN in the first stage is equivalent to z* up to some
linear transformation A., we can assume a linear Gaussian likelihood with invertible linear
transformation A to recover this linear transformation, similar to the likelihood function in a

probabilistic principal component analysis (PCA) model (Tipping and Bishop, 1999):
pa(hlz) = N(h|Az, 0,1), (4.13)

where A is a free parameter to be learned from data, which aims to recover the ground-truth

linear transformation A, for the linearly identifiable representation £ obtained before.

Exact Maximum Marginal Likelihood Learning

Let ¢ = (A, () denote all learnable parameters in an MTLCM, which include the linear
transformation A and the task-specific parameters 1), = {c,,~,} for all tasks 7. The marginal
likelihood for MTLCM is given by

pulbly, ™) = [palhl2)p(2ly, 7) d
= N(hlpr, Z7),

(4.14)

where the mean ., and covariance >, have the following closed-form expressions (see
Appendix C.4 for a derivation):

pr =yA(: © (1= ¢r)), (4.15)
¥, = Adiag(c?(1 —¢;) + ¢,) A" + 021
Note that the conditional prior p(z|y) over the latent factors z is typically non-factorised
according to the data generating process described in Section 4.3. This is because the causal
latent factors z. are parents of the target variable y, which become correlated when conditioning
on y. In order to guarantee block-wise identifiability, iCaRL (Lu et al., 2022) parameterises
such non-factorised conditional priors using a ReLLU activated energy-based model which

is optimised by a hybrid of variational inference and score matching, which turns out to be

68 Probabilistic Multi-Task Regression for Identifiable Representation Learning

difficult to train in practice due to variational over-pruning (Trippe and Turner, 2018) and high
computational complexity of score matching (Hyvirinen, 2005). In contrast, our proposed
structured conditional prior as shown in Equation (4.10) factorises over all latent factors,
which, together with the linear Gaussian likelihood as shown in Equation (4.13), allows us
to use exact maximum marginal likelihood optimisation for Equation (4.14) to recover the
ground-truth latent factors z* up to permutations and scaling from the linearly identifiable data

representations h = h(z) learned in the first stage:

U= arg max Byeyp,eyin) 108 2 (o), 7)) (4.16)

It is worth noting that our method has greater applicability for supervised learning than the
methods that rely on a learned probabilistic inverse ¢, (z|z, u) to extract identifiable latent
factors from data such as iVAE (Khemakhem et al., 2020a) and iCaRL (Lu et al., 2022). While
these approaches theoretically could apply to learned representations in discriminative settings
by letting u = y, they are impractical in such contexts since ¢,,(z|x, y) depends on the target
variable y which is generally unknown at test time. In contrast, our method does not depend on
y at inference time, since the identifiable latent factors can be obtained by applying the inverse
linear transformation A learned by MTLCM to the linearly identifiable data representations
h produced by the MTRN, i.e., z = A~ h4(z). This enables our model to be applicable to

recovering the canonical data representations in the discriminative settings at test time.

Identifiability Theory

We first define point-wise identifiability in the multi-task regression setting.

Definition 4.3.4 (Point-wise identifiability of multi-task representation learning). Let) =
(A, ¢) and ' = (A’, (') be any two sets of parameters. The latent factors are identifiable
up to point-wise permutations and scaling if there exists a permutation and scaling matrix
P € R%*4 gych that

py (hly, 7) = py(hly,7), Yh, 7,y = (A')_lh = P(A_lh). (4.17)

We show that the latent factors of MTLCM are point-wise identifiable if there are sufficient
variations of causal/spurious latent factors across tasks measured by the linear dependencies
among the natural parameters of their conditional priors.

Theorem 4.3.5. Let u := [y, 7] denote the conditioning variable and k := 2d,. Assume that

the learned and ground-truth linear transformations A and A, are invertible. Suppose that

4.4 Empirical Evaluation 69

there exist k + 1 points ug, uy, - - - , uy such that the matrix

L= [n(u1) —n(uo), -, n(ur) — n(uo)] (4.13)

is invertible, where
1
A ra,

. € RF (4.19)
—1diag(A')

n(u) =

are the natural parameters of our structured conditional prior p(z|u). Assume that Equa-
tion (4.16) has a unique solution and that the optimisation procedure for Equation (4.16)

converges to the optimal marginal likelihood
pi(hly, 7)== N(h|puz, X7) (4.20)

under standard regularity conditions for maximum marginal likelihood estimators (Gurland,
1954), i.e.,
plb’(h|ya7—) :p*(h|y77_)7 thyv’ra (421)

where > and X7 are as defined in Equation (4.15) but with the ground-truth linear transfor-
mation A, ground-truth causal indicators ¢ and ground-truth spurious coefficients ;. Then,

the latent factors recovered by MTLCM are guaranteed to be point-wise identifiable.

The proof of Theorem 4.3.5 can be found in Appendix C.2. The first part of the proof adapts

the proof technique from Khemakhem et al. (2020a) to show identifiability up to block-wise
2

permutations and scaling of the sufficient statistics [z;, z7|. The second part of the proof is
novel, which leverages the properties of the linear likelihood as shown in Equation (4.13) to
further reduce the block-identifiable equivalence class to point-wise permutations and scaling
of the actual ground-truth latent factors. This resolves the point-wise indeterminacies of
Khemakhem et al. (2020a); Lu et al. (2022) where their models are only identifiable up to

block-wise transformations.

4.4 Empirical Evaluation

This section presents empirical results to validate the ability of MTLCM to recover canonical
representations up to permutations and scaling for both synthetic and real-world data. We
contrast our model with the more general identifiable models of iVAE (Khemakhem et al.,
2020a) and iCaRL (Lu et al., 2022). For a fair comparison, we also consider the multi-task
extensions of iVAE and iCaRL, namely MT-iVAE and MT-iCaRL, which include the task
variable 7 in the conditioning variables u in their conditional priors p¢(z|u) with the task-

specific parameter (; = {v,} to be learned from data, which is the counterpart to (; = {c,, v, }

70 Probabilistic Multi-Task Regression for Identifiable Representation Learning

in our MTLCM but has no explicit interpretations with respect to a causal graph. We note
that while the works of Fumero et al. (2023); Lachapelle et al. (2023) also consider methods
for identifiability arising from learning across tasks, their approaches effectively implement
a meta-learning setting (i.e., require that the support and query sets be disjoint in the bilevel
optimisation process). The assumption on task support variability for the latter also requires
a much larger number of tasks (more than 10° tasks as in their experiments) than what
we consider here (around 10? tasks). These methods are thus not particularly well suited
to comparison with our approach and we omit them from our baselines. Detailed model
configurations can be found in Appendix C.5. Each experiment is run until convergence and
repeated across 5 random seeds to guarantee reproducibility.

4.4.1 Synthetic Data

We first validate our approach in the situation when the data generating process agrees with
the assumptions of our models. For each task, we first sample the causal indicator variables
c;. The causal latent factors 2 are then sampled from a standard Gaussian prior. These
are then linearly combined according to random weights w? to produce the target variable y
with a task-dependent noise corruption. Finally, the spurious variables 2z} are generated via
different linear weightings + of the target variable y. This mirrors the assumed data generating
process described in Section 4.3. For the linear case, we generate observed data using random
linear transformations of the ground-truth latent factors. For the non-linear case, we extend
this to non-linear transformations parameterised by randomly initialised neural networks and
demonstrate that our approach can be combined with the multi-task identifiability result up
to linear transformations to recover point-wise permutations and scaling of the ground-truth

latent factors.

Linear Synthetic Data

We study the ability of our proposed multi-task linear causal model (MTLCM) to recover the
ground-truth latent factors up to point-wise permutations and scaling via the mean correlation
coefficient (MCC) as in Khemakhem et al. (2020a). The synthetic data is generated by
sampling 200 tasks of 100 data points each. Each task varies in its causal indicator variables
¢, causal weights w, and spurious coefficients v . We then transform the ground-truth
latent factors z* with a random invertible matrix A, shared across all tasks to obtain linearly
identifiable representations /. Identifiability in this setting is assessed by directly computing
the MCC score between the representations obtained from our MTLCM and the ground-truth
latent factors, which is referred to as strong MCC. Since the data is known to be linearly

identifiable, we use linear likelihoods for the baselines as well.

71

4.4 Empirical Evaluation

TTIFOLES LTTIFCL96 LI'OFPI'S6 66'0FSLLS 6L0FEYL6 TTOFI6E6 LSOF6196 16°0FSI96 IL0FSE68 (Bam) NULIN
LTTF8TY8 0T T+8T96 VI'0FSL'S6 L6°0FS0°68 SLOFCI'86 9I'0FLIS6 89°0FF¥L6e ILO0FP6'L6 OL'IFIE €6 INDTLN
YO IFO0I'8S ST'0F9509 LOTFEI'LS TSTFIOT9 61CHSLE9 ¥80FLEEY S90+CEE9 TEEFITOL LO6TFLS LI TIeO-LIN
0€°0FI196S €T0F9S09 19 1F6LSS ¥E0F9S89 SEOFIE69 09 1F¥P'S9 86CH68EL LEOFVI08 S IF+8LIL HVARLIN
YSTHOrYS 18 1+088S €ICFE6TS €V THCOT9 vLCFI909 ¥ TF60°LS €8 TFVI8S 9TVF6CC9 61 €F+0L9S TgeO!
[€°0F686S LTOFEC09 €€0F0L8S LI0OFSO069 +vI'0F9989 6¥V'1+81'C9 T€0FS69L O0COFCVLL €T TFIIEL HVA!
00¢/0¢ 001/0C 05/0¢ 00¢/0¢ 001/0¢ 05/0¢ 00¢/0¢ 001/0¢ 05/0¢ PIAISqO/AUSIE TH#
4! 8 14 [esnen#

*90uRI9)a1 © st paytodar os[e st NY.LIA 10J (%) DDA Jeam

YL (%) DDIN Suoss AQ paInseawl SI0)dJ JUIIL[JNAYIUAS PAWIOJSURT) A[TBAUI[-UOU) SULIIA0IAI JOJ dduewiojrad AI[iqeynuapy 7'y 9[qelL,

LTOTPI'66 9E'0FIS66 TTOTIL'66 10°0TS6'66 SS'0TL6'S6 9T'0TFOL'66 OT'0FTLL66 T10°0F96'66 10°0TS6'66 WO TILIN
6S0THS'6L TE'TF6LTL SOTTHOYY 9TTTSST9 $80TOCTS 00 TFIT6L €SOTEIOL L6TTFCIIL LEETF60TS TIBOLLIN
6V TTEST6 8S0TCHS6 TETTIEIL 69°LT609L ST'€TIS06 1S TT06'L6 H0'0T68'66 10STHI 06 CI'STSL16 HVARLIN
19°0FL98L 69 TTHSTL 00'€T0099 TETT86'99 00'TF0008 TSOTEH6L TTTFLETL 60TFSSYL OV 9TTTSL TIeO!
OT'0T6L'6L STOFLSLL OSOF6TYL L6TTLOTS LOOTI6 TS LTOTFOETS LSOTFICTS €L0FTOSL TOSTSLLY AVAT
05/0S 02/02 01/01 S/S 05/0S 02/02 01/01 S/S €/ POAISqO/USI T
¥ z [esne

“(9) DDIA Suons AQq paInseaw SI0)OeJ JUIL[ONAYIUAS PAULIOJSULI) A[Ieaul] 9Y) SULIdA0aI J0J douewioftad A[Iqeynuap] [§ 9[qeL

72 Probabilistic Multi-Task Regression for Identifiable Representation Learning

Table 4.1 shows that MTLCM manages to recover the ground-truth latent factors from A up to
point-wise permutations and scaling, and the result is scalable as the number of latent factors
and the number of causal factors increase. In contrast, iVAE, iCaRL and their multi-task
extensions underperform our model by a large margin in most cases. We find that for all tasks,
the learned causal indicator variables by MTLCM also exactly match the ground-truth ¢,
confirming that our approach automatically disentangles the causal and spurious latent factors.
Ablation study for the effects of the learnable parameters and the type of linear transformation
can be found in Appendix C.6.

Non-Linear Synthetic Data

A more general analysis of the identifiability of our proposed approach is to consider the
extension of the linear experiments to the setting of arbitrary transformations of the latent
factors. For this, we consider the case where random (non-linear) MLPs are used to transform
the ground-truth latent factors z* into higher dimensional observations x. By Corollary 4.3.3,
it is possible to recover linearly identifiable representations h of the data = by training stan-
dard multi-task regression networks (MTRNSs). Identifiability in this setting is assessed by
first performing a canonical correlation analysis (CCA) as in Roeder et al. (2021), which
linearly maps the obtained representations such that they maximise the covariance with the
ground-truth latent factors. The resulting mapped representations can thus be compared with
the ground-truth latent factors via the MCC score. This is referred to as weak MCC, which
quantifies the linear identifiability of the learned representations from MTRNs. We further
train our MTLCM on the linearly identifiable representations / obtained from the MTRN to
obtain identifiable representations up to point-wise permutations and scaling. Identifiability
in this setting is assessed by directly computing the MCC score between the representations
obtained from our MTLCM and the ground-truth latent factors as in the linear case (i.e., strong
MCC). We assess this for various dimensionalities of the observed data and for different
settings of the causal variables, where we generate 500 tasks of 200 samples each to improve
convergence of the multitask model. The MTRN and the likelihoods in the baselines are pa-
rameterised by one-hidden-layer MLPs whose hidden dimensionality are twice the observation

dimensionality.

Table 4.2 shows that the strong MCC for MTLCM is able to match the weak MCC for MTRN,
confirming the point-wise determinacies of our approach. In contrast, the strong MCC for
iVAE, iCaRL and their multi-task extensions significantly underperform MTLCM. Again, we
find that for all tasks, the learned causal indicator variables exactly match the ground-truth

causal indicator variables c;.

4.4 Empirical Evaluation 73

Table 4.3 Identifiability performance for the latent factors learned on the superconductivity
dataset measured by strong MCC (%). The weak MCC (%) for MTRN is also reported as a

reference. “—” indicates divergence of optimisation during training.
Method Latent dim
5 10 20 40 80
1VAE 32.87£1.16 33.21£1.04 30.68£0.39 37.41£0.84 45.52+0.81
iCaRL — 32.23£0.61 35.62+0.40 32.58£2.16 32.19+£2.45
MT-iVAE 35.58+1.48 33.544+0.80 31.68+0.32 35.14£0.82 44.49+0.96
MT-iCaRL 42.26+2.33

MTLCM 98.90+£0.03 96.93+0.12 84.56+1.11 46.31+0.34 48.94+2.16
MTRN (weak) 98.85£0.03 97.17£0.04 93.23+£0.08 78.58+£0.09 52.02+0.19

4.4.2 Real-World Molecular Data

We further evaluate our model on two real-world molecular datasets. We assume that the data
is generated by transforming some unknown ground-truth latent factors z* with some unknown
non-linear mixing function f,. Since z* are unknown to us, identifiability in this setting is
assessed by first training a model five times with different random seeds, then computing
the MCC score between the data representations recovered by each pair of these five models,
following Khemakhem et al. (2020b). As in Section 4.4.1, we employ the weak MCC score to
assess the linear identifiability of the representations h learned by the MTRN and the strong
MCC score to assess the point-wise identifiability of the latent factors z recovered by each
method. Given that the true latent dimension is unknown, we assess the identifiability of each
model at gradually increasing latent dimensions. In practical scenarios, the latent dimension

would be selected based on a similar model selection exercise.

Superconductivity Dataset

The superconductivity dataset (Hamidieh, 2018) consists of 21,263 superconductors. We
consider the tasks of regressing 80 readily computed target features (i.e., 80 tasks) such
as mean atomic mass, thermal conductivity and valence of the superconductors from their
chemical formulae, represented as discrete counts of the atoms present in the molecule. The
MTRN and the likelihoods in the baselines are parameterised by two-hidden-layer MLPs with
a hidden dimension of 64.

Table 4.3 shows that the strong MCC for our MTLCM is greater than 0.96 and is able to
match the weak MCC for the MTRN when the dimensions of the latent representations are 5
and 10, showing that our method manages to recover canonical latent representations for the
superconductors. Interestingly, the strong MCC score for the MTLCM rapidly decreases as

74 Probabilistic Multi-Task Regression for Identifiable Representation Learning

o
©
o
o &

0.70
Method

065 o MTRN (weak)

5 6 7 8 9 10
Latent Dimension

Figure 4.3 Identifiability performance for the latent factors learned on the QM9 dataset.

we increase the number of latent factors in the model, suggesting that there are at most 10-20
effective tasks out of the 80 tasks used for this data. In sharp contrast, all baseline models
fail to recover identifiable latent factors for the superconductors in all cases as their strong
MCC scores do not exceed 0.4. There are several settings where optimisation diverged during
training, since VAE and score-based models are generally difficult to train on discrete inputs

of chemical formulae.

QM9 Dataset

The QM9 dataset (Ramakrishnan et al., 2014; Ruddigkeit et al., 2012) is a popular benchmark
for molecular prediction tasks consisting of 134, 000 enumerated organic molecules of up to
nine heavy atoms together with a set of 12 calculated quantum chemical properties (i.e., 12
tasks). In contrast to the more artificial superconductivity dataset, the QM9 dataset enables us
to assess the feasibility of achieving identifiable representations in the context of highly non-
trivial quantum chemical properties which are highly relevant to their pharmacological profile.
Accurately modelling this dataset requires us to capture potential three-dimensional atomic
interactions, allowing us to assess the translation of our theoretical results to more complex
equivariant graph neural network architectures. For this reason, we use an equivariant graph
neural network (EGNN) (Satorras et al., 2021) as the feature extractor for the MTRN. This
enables the model to incorporate positional features of each atom while respecting physical

symmetries such as equivarance to rotation and translation. Given that the graph autoencoders

4.5 Discussion 75

proposed in Satorras et al. (2021) and prior works (Kipf and Welling, 2016; Liu et al., 2019a;
Simonovsky and Komodakis, 2018) do not provide a means of jointly decoding the feature and

adjacency matrices, we do not consider the iVAE and iCaRL baselines for this dataset.

Figure 4.3 shows that the linear identifiability achieved from the MTRN implies that iden-
tifiability is achievable up to eight latent features, after which there is a sharp decline in
MCC. The implication of this observation is that there exist some redundancies between tasks
(i.e., the number of effective tasks is less than the total number of tasks), which limit the
maximal identifiable latent dimension. This is clearly the case for certain tasks. For example,
prediction of the HOMO-LUMO gap can be directly obtained as a result of the difference
between HOMO (highest occupied molecular orbital energy) and LUMO (lowest unoccupied
molecular orbital energy) values. Nonetheless, the MTLCM is able to closely approximate the
weak MCC score up to eight latent factors, always surpassing a score of 0.9, demonstrating its
ability to recover point-wise identifiable representations in the context of real-world molecular
datasets.

4.5 Discussion

In this chapter, we proposed a novel perspective on the problem of multi-task identifiable
representation learning by exploring the implications of explicitly modelling task structures
via probabilistic multi-task regression models. We showed that this resulted in new identifia-
bility theory for linear equivalence classes in the general case of deep multi-task regression.
Furthermore, while spurious correlations have been shown to be a failure case of deep learning
in many recent works, we demonstrated that such latent spurious signals might in fact be
leveraged to improve the ability of a model to recover more robust disentangled representations
(i.e., point-wise identifiability). In particular, when the latent space is explicitly represented as
consisting of a partitioning of causal and spurious features per task, the linear identifiability
result of the multi-task regression may be further reduced to identifiability up to point-wise
permutations and scaling under sufficient variability conditions of the tasks. Empirically, we
confirmed that the theoretical results held for both linear and non-linear synthetic data and
for two real-world molecular datasets of superconductors and organic small molecules. We
anticipate that this may reveal new research directions for the study of both representation
learning and synergies with probabilistic and multi-task learning methods, and hope that these

methods will produce robust feature representations that can generalise to unseen tasks.

Below, we discuss some of the main assumptions underlying our approaches, as well as their

implications and limitations.

76

Probabilistic Multi-Task Regression for Identifiable Representation Learning

. Our linear identifiability result requires the dimensionality of the learned feature rep-

resentations be smaller than the number of effective (or “independent”) training tasks
as measured by the linear dependencies among the weights of their regression heads.
This can limit the expressivity of the learned representations if we do not have access
to a sufficiently large number of independent training tasks. Furthermore, if the di-
mensionality of the representations is too small, the model family may not contain the
ground-truth data generating process, and therefore it would be impossible to recover

the ground-truth model that has generated the observed data.

. Our point-wise identifiability result requires that there is at least one spurious latent

factor in some tasks and that the causal/spurious split cannot be identical across tasks.
Otherwise, the prior p¢(z|u) over the latent factors may not have sufficient auxiliary
information to guarantee point-wise identifiability. These requirements can be a limiting

factor for real-world applications, since they may not always be satisfied in practice.

. While our model requires certain linear and Gaussian assumptions, we would like to

point out that they are well-justified. In Stage 1, the Gaussian likelihood in Equation (4.1)
is a standard choice for the predictive distribution in the final layer of a (non-linear)
deep regression network. In Stage 2, the Gaussian prior over the causal latent factors in
Equation (4.7) follows the standard setting of generative modelling. The linear Gaussian
regression models for the causal latent factors in Equation (4.8) and for the spurious
latent factors in Equation (4.9) are analogous to the standard predictive distribution
for the final layer of regression neural networks. The linear Gaussian likelihood in
Equation (4.13) follows the standard probabilistic liner PCA model (Tipping and Bishop,
1999), which is a natural choice given the linear identifiability result arising from the
MTRN in Stage 1.

. Our model proposes that the correlations between latent factors and the regression

target for each task be modelled as a partitioning of causal and spurious influences. We
acknowledge that indeed our assumed direct edge y — 2z, in Figure 4.1 does not in
general capture all possible non-causal correlations between latent factors and the target
variable, since the Reichenbach principle (Reichenbach and Morrison, 1956) states that
non-causal correlations can originate from either a common cause (i.e., confounders)
or an anti-causal/spurious relationship (as assumed in this work). However, we argue
that there are many situations where the proposed model can be useful in practice, even
if it does not explicitly model the confounders in full generality, since this anti-causal
assumption employed in our paper has been used in prior work (Lu et al., 2022) and
is well-documented in real-world examples. For example, in most drug discovery

campaigns, molecules to be tested are selected based on some structural similarities

4.5 Discussion 77

(=)) _1®
(=)

(a) Anti-causal (b) Uncorrelated (c) Confounding

Figure 4.4 Illustration of the possible relationships between a latent factor z; and target variable
y for a given task. Cases (a) and (b) are captured by our model. Note that (b) can be handled
by our model by treating z, as a causal latent variable with zero regression weight on the
dashed green arrow z; — y. Case (c) is not captured by our model, because although the
unobserved confounder variable ¢ can be viewed as a latent factor, the red arrow ¢ — z, cannot
be captured by our model.

to an originally promising molecule (based on the quantity to be estimated, e.g., drug
potency). Structural molecule features are then likely to be spuriously correlated with
the regression target due to their selection criteria, without actually being involved
in the drug’s mechanism of action. Having said that, one could in principle consider
other cases: one where there is no correlation between a latent variable and the target
variable, or one where the correlation between a latent variable and the target arises
from a confounding variable. These possibilities are depicted graphically in Figure 4.4.
We note that the former case could be handled by our model by treating it as a causal
variable with a regression weight of zero. In the latter case, this confounding variable
would then itself be a latent variable with a causal association to the target variable and
a latent factor, which indeed cannot be captured by our model.

5. While the causal and probabilistic assumptions of our approach do not constitute the
most general conceivable case, we note that there is an inherent trade-off between full
generality and tractability. Indeed, prior work which may theoretically allow for more
general causal or probabilistic models typically entail approximations in the optimisation.
Further, the empirical results on real-world data of Section 4.4 suggest that our approach

may indeed be robust to moderate model mis-specification.

So far, we have leveraged probabilistic inference to improve the data-efficiency and identifiabil-
ity of molecular representation learning. In the next chapter, we will explore a complementary
perspective: using deep learning to enhance probabilistic inference. We will show that
deep learning has the potential to improve the scalability and efficiency of sampling-based

probabilistic inference for multi-modal probability distributions.

Chapter 5

Diffusion-Inspired Training of Deep Gen-
erative Models for Enhanced Sampling

This chapter is mainly based on He et al. (2025):

* Jiajun He*, Wenlin Chen*, Mingtian Zhang*, David Barber, José Miguel
Hernandez-Lobato. Training Neural Samplers with Reverse Diffusive KL,
Divergence. International Conference on Artificial Intelligence and Statistics
(AISTATS), 2025.

In additional, this chapter also contains materials from Chen et al. (2024b):

* Wenlin Chen*, Mingtian Zhang*, Brooks Paige, José Miguel Hernandez-Lobato,
David Barber. Diffusive Gibbs Sampling. International Conference on Machine
Learning (ICML), 2024.

For each work, co-first authors (*) contributed equally to method development, code

implementation, experimentation and manuscript writing under the supervision of the

remaining authors.

In the previous two chapters, we showed that probabilistic inference approaches can be
leveraged to improve the data efficiency and identifiability of deep neural networks for
improved representation learning. This chapter explores the opposition direction in the
reciprocal relationship between deep learning and probabilistic inference, demonstrating
that deep learning can in turn enhance the efficiency of probabilistic inference. Specifically,
we leverage ideas from generative deep learning to the improve sampling-based probability
inference for unnormalised probability distributions in the case where ground-truth samples
are unavailable. Inspired by diffusion models, we propose to minimise the reverse Kullback-

Leibler (KL) divergence along the marginal diffusion trajectories of the densities of a deep

80 Diffusion-Inspired Training of Deep Generative Models for Enhanced Sampling

generative model and the target distribution. The resulting objective is referred to as reverse
diffusive KL (DiKL) divergence, which enables deep generative models to explore all high
density regions of the target distribution. This is in contrast to the well-known mode-collapse
behaviour found in the traditional reverse KL divergence. We derive a tractable gradient
estimator for training deep implicit models with this objective, enabling efficient generation of
independent samples from target distributions in one step. We find that our method enhances
sampling efficiency across various Boltzmann distributions, including both synthetic multi-

modal densities and many-body particle systems.

5.1 Motivation and Overview

Sampling from unnormalised probability distributions is an essential and challenging research
problem with wide applications in machine learning, statistics, and natural sciences. We
consider a target distribution with an analytical but unnormalised density function:

_ exp(~E(x))

pa(z) = 7 ; (5.1

where £ € X is the random variable of interest and £ : X — R is a lower-bounded

differentiable energy function. The normalising constant involves an integral:

Z = /exp(—E(x))dx, (5.2)

which is typically intractable for complex target distributions in practice. The gradient of the

log target density is known as the score function, which is independent of Z:

Note that the score function can be evaluated at any input z, since £ is assumed to be
differentiable. This assumption is commonly satisfied in various practical applications, such
as Bayesian inference (Welling and Teh, 2011), energy-based generative modelling (Song and
Ermon, 2019), and molecular dynamics simulation (No€ et al., 2019).

The goal of the sampling problem is to draw independent samples 2 ~ py(x) from the target
distribution efficiently, which can be used to approximate the expectations of functions of
interest over the target distribution p,(z) as defined in Equation (2.35). For example, such
expectations may correspond to physical quantities that describe the macroscopic behaviours
of molecular dynamics. A common approach to sampling from py(x) involves designing
Markov Chain Monte Carlo (MCMC) samplers (Neal et al., 2011). Apart from the standard
MCMC algorithms presented in Section 2.1.2, advanced approaches that build on top of

5.1 Motivation and Overview 81

existing MCMC samplers, such as parallel tempering (PT) (Geyer and Thompson, 1995;
Surjanovic et al., 2022; Swendsen and Wang, 1986; Syed et al., 2022) and diffusion Gibbs
sampler (DiGS) (Chen et al., 2024b), have been proposed to accelerate the mixing speed
of MCMC samplers. However, for high-dimensional multi-modal target distributions, these
methods still take a long time to converge and need to simulate a very long chain for the
generated samples to be uncorrelated (Chen et al., 2024b; Pompe et al., 2020). This presents

significant challenges in large-scale simulation problems.

Alternatively, one can leverage generative deep learning to amortise the sampling process.
This approach emulates the sampling process by approximating the target distribution py(x)
with a deep generative model py(x), which can directly produce independent samples from
pa(z). Such models are often referred to as neural samplers (Arbel et al., 2021; di Langosco
etal., 2022; Levy et al., 2018; Wu et al., 2020). Training a neural sampler involves learning
the model parameters 6, which is usually achieved by minimising a divergence between py(x)
and py(x). In the sampling setting, we only assume access to the unnormalised probability
density function py(x) x py(z) = exp(—FE(x)) defined by an energy function E(x) without
any ground-truth samples, which is different from the usual generative modelling setting where

ground-truth samples D = {z,, }_, ~ py(z) are available for model training.

A common objective for training neural samplers is the reverse KL (R-KL) divergence due
to its tractability. However, the most significant limitation of R-KL is the mode-collapse
phenomenon due to its mode-seeking behaviour (Bishop, 2006): when the target distribution
pa(x) contains multiple distant modes, the model py(x) trained by R-KL will underestimate the
variance of py(z) and can only capture few modes. This is undesirable since many important
target distributions, such as the Bayesian posteriors (Welling and Teh, 2011) and Boltzmann

distributions (Noé€ et al., 2019), are characterised by a large number of distant modes.

This chapter presents a novel approach to training neural samplers with diffusive KL (DiKL)
divergence. DiKL convolves both the target and the model densities with Gaussian convolution
kernels, allowing for better connectivity and merging of distant modes in the noisy space.
Notably, DiKL is still a valid divergence between the model density py(z) and the original
target density p4(x), which allows us to learn the original target distribution with better mode-

covering capability. The key contributions of this chapter are summarised as follows.

1. We introduce a novel paradigm for training neural samplers with the reverse DiKL
divergence (Section 5.3.1), which encourages neural samplers to approximate the target
distribution more effectively by promoting mode coverage compared to the traditional
reverse KL divergence (Section 5.3.2).

2. We derive a tractable gradient estimator for the reverse DiKL divergence, enabling effi-

cient training of neural samplers with the proposed objective in practice (Section 5.3.3).

82 Diffusion-Inspired Training of Deep Generative Models for Enhanced Sampling

Additionally, we show how equivariance can be achieved with this estimator when
dealing with physical systems with symmetry constraints (Section 5.5.2).

3. We evaluate our approach on both synthetic multi-modal targets and many-body particle
systems, finding that it outperforms or matches the performance of previous state-of-the-
art models with reduced training and sampling costs (Section 5.5).

5.2 Preliminary: Kullback-Leibler Divergence

5.2.1 Definition of KL Divergence

Kullback-Leibler (KL) divergence is a type of statistical divergence that measures the statistical
distance between two probability distributions. For two distributions with density functions p

and ¢, KL divergence is defined as

KL(plla) = [(logp(z) ~ log g(a))p() da. (54

Note that KL divergence is well-defined if ¢(x) = 0 implies p(x) = 0 for all x € X. It can be
shown that KL divergence has the following two important properties (Bishop, 2006).

1. It is always non-negative:
KL(pllg) >0, Vp,q. (5.5)

2. It equals zero if and only if the two density functions are identity almost everywhere
(a.e.):
KL(p|llg) =0 <= p=q(ae.). (5.6)

However, it is worth noting that KL divergence is not a valid distance metric, since it is
asymmetric (i.e., KL(p||q) # KL(g||p)) and does not satisfy the triangle inequality in general.
Nevertheless, KL(p||¢) measures the difference between two distributions in terms of the
expected excess surprise from using the distribution ¢ as a model when the true distribution is
p. Due to its computational tractability and nice probabilistic interpretation, KL. divergence is
widely used in machine learning as loss functions for model training, such as fitting generative

models to a given target distribution.

5.2.2 Forward KL Minimisation

Given a target distribution py(x), it is a common practice to fit a generative model py(x) to the

target distribution py(x) by minimising the forward KL (F-KL) divergence when ground-truth

5.2 Preliminary: Kullback-Leibler Divergence 83

(a) Forward KL (b) Reverse KL (c) Reverse KL

Figure 5.1 A comparison between model training with forward and reverse KL divergences.
Red contour lines depict a uni-Gaussian model, and blue contour lines depict a mixture of
Gaussians target distribution. The figures show that F-KL exhibits the mass-covering property,
while reverse KL exhibits the mode-collapse phenomenon. The figures are reproduced from
Bishop (2006).

samples from py(x) are available:

KL(pllps) = | (105 pa() — log po(a))pa(a) da (57

= — /pd(x) log pg(x) dz + const., (5.8)

which is equivalent to maximising the log marginal density py () as discussed in Section 2.3.2,
since the entropy of the target distribution p,(z) is a constant independent of the model
parameters #. Forward KL (F-KL) divergence has a nice mass-covering property (Bishop,
2006), as shown in Figure 5.1a, which encourages the model to explore all high density areas

of the target distribution.

This objective is particularly suitable for models with analytically tractable marginal densities
pe(x), such as normalising flows. For other latent variable models with intractable marginal
densities like VAEs, it is possible to derive a tractable upper bound of F-KL:

KL(pallpo) < KL(gy(2|2)pa()[Ipo(z]2)p-(2)), (5.9)

which is equivalent to the variational lower bound of the log marginal density log py(z) as
shown in Equation (2.78). As discussed in Section 2.3.2, variational approaches often suffer

from its own problems despite tractability.

5.2.3 Reverse KLL Minimisation

For the sampling problem considered in this chapter, we only assume access to the unnor-

malised density of the target distribution p,(x) o exp(—F(x)). Since no ground-truth samples

84 Diffusion-Inspired Training of Deep Generative Models for Enhanced Sampling

are available, F-KL is intractable in this setting. A common alternative choice is to minimise
the reverse KL (R-KL) divergence:

KL(pollpa) = [(10 po() ~ log pa(a))po() da

— /(logpe(l’) + E(z))pg(x) dx + log Z, (5.10)

where log Z is a constant independent of x or #. The integration over py(z) can be approxi-
mated by the Monte Carlo method using samples from the model py () with the reparametri-
sation trick. In contrast to F-KL, R-KL exhibits the mode-seeking behaviour as shown in
Figure 5.1b and Figure 5.1c, which typically results in the trained model py(x) collapsing to a
small number of modes in a multi-modal target distribution (Bishop, 2006).

Again, this objective can be directly optimised for models with analytically tractable marginal
densities. For more general latent variable model with intractable marginal densities, Zhang
et al. (2019) derive a tractable variational upper bound of the R-KL:

KL(ps|pa) < KL(po(|2)p.(2)[lgs(z|z)pa()), (5.11)

where ¢, (z|2) is a learnable variational distribution. This variational upper bound contrasts
with the more commonly studied F-KL upper bound as shown in Equation (5.9) and Equa-
tion (2.78). While this approach circumvents the intractability of log py(z), it again suffers

from the common challenges and limitations of variational inference.

Alternatively, Li and Turner (2018); Luo et al. (2023); Shi et al. (2018); Song et al. (2020) derive
an analytical expression of the gradient of R-KL with respect to model parameters 6:

0
Vo KL(pllpa) = [po(@)(V. logpo(e) = V. log pa(a)) - da, (5.12)

where the score function V, log py(z) of the model can be approximated by training a score
network using the model samples with score matching (Hyvirinen, 2005). This enables fitting
latent variable models to unnormalised densities by R-KL minimisation without any variational

approximation.

5.3 Diffusive Kullback-Leibler Divergence

Diffusion models are high-quality deep generative models trained using ground-truth samples
from a target distribution (Ho et al., 2020; Sohl-Dickstein et al., 2015; Song et al., 2021b). A
critical success factor for diffusion models is the Gaussian convolution trick that gradually

transforms a complicated multi-modal target distribution py(z) into a simple uni-modal

5.3 Diffusive Kullback-Leibler Divergence 85

30 - 0.06 - 0.030 -

15- 0.03 - 0.015 -

0 | 0.00 0.000 -

p(x) p(x),oc=5 p(x), 0 =10

Figure 5.2 We convolve a Gaussian kernel N (Z|z,0?) with ¢ € {5,10} to the original
distribution p(z). This demonstrates that Gaussian convolution can bridge modes and even
reduce the number of modes as the variance of the Gaussian increases.

Gaussian distribution to encourage exploration of the support of py(x) (Chen et al., 2024b;
Huang et al., 2024; Lee et al., 2021): it turns out that Gaussian convolution can potentially
reduce the number of modes, since it effectively convexifies any functions to its convex
envelope (Mobahi and Fisher, 2015). Figure 5.2 provides a visualisation of a toy example,
showing that by increasing the variance of the Gaussian convolution kernel, we can bridge

modes or even reduce the number of modes in the original multi-modal distribution.

5.3.1 Definition of DiKL Divergence

To construct a valid divergence that leverages Gaussian convolutions, one can convolve two

distributions p(x) and ¢(x) with the same Gaussian kernel:
k(Z|z) = N(F|ax, o), (5.13)
and then define the KL divergence between the convolved distributions:
5(#) = [k@l)p(e) dz, (5.14)
i(7) = [Mile)a(e) da. (5.15)

This type of divergence construction method is known as the spread divergence (Zhang et al.,
2020).

Definition 5.3.1. The spread KL (SKL) divergence between two distributions with density
functions p and q is defined as the KL divergence between the convolved distributions p and §:

SKL(pl|q) == KL(p||q) = KL(p * kl|q = k), (5.16)

86 Diffusion-Inspired Training of Deep Generative Models for Enhanced Sampling

where x denotes the convolution operator defined as
Fom k= /k;(:ﬁ]m)ﬁ(w) dz (5.17)

for any density function T.

SKL is a theoretically well-defined statistical divergence, i.e., SKLx(p||q) > 0 and SKLy(pl||q) =
0 if and only if p = ¢ (a.e.) for any Gaussian kernel k£ (Zhang et al., 2020).

In practice, the choice of k£ is crucial for model training with spread KL divergence, and
selecting the optimal kernel is a challenging problem. Intuitively, for a given fixed contraction
factor o € [0, 1], a large noise standard deviation o will reduce the barriers of adjacent modes
in the target distribution py(x). Similarly, with a fixed o, reducing « will bring the modes
closer. Different choices of the Gaussian kernel £ can result in different properties in the
corresponding SKL, which will be further discussed in 5.3.2. Inspired by the recent success of
diffusion-based deep generative models, instead of selecting one k, one can use a sequence of
Gaussian kernels with different contracting factors and noise levels to construct a multi-level
spread KL divergence, which we refer to as diffusive KL (DiKL) divergence.

Definition 5.3.2. The diffusive KL (DiKL) divergence between two distributions with density
functions p and q is defined as a weighted sum of a sequence of convolve distributions obtained

by different Gaussian convolution kernels:

T
DiKLic(pl|q) = > _ w(t)KL(p * k|| = k) < KL(p||q), (5.18)

t=1
where w(t) is a positive scalar weighting function that sum to one, and IC = {ky,--- ,kr} is

a set of Gaussian convolution kernels denoted as ki(z|x) = N (z¢|ayx, o?1).

The fact that DiKL divergence is a weighted sum of multiple spread KL divergence with
different Gaussian kernels implies that it is a valid statistical divergence, i.e., DiKLx(p||q) > 0
and DiKLx(p||q) = 0 if and only if p = ¢ (a.e.). Below is a sketch of proof for a single kernel
k; following Zhang et al. (2020); the extension to multiple kernels is straightforward.

DiKLg, (pllg) =0 <= pxk =qxk (ae.)
— Flp*k) = Flqg* ki
= Fp|Fk] = FlglF[ki] (5.19)
— Flpl = Fld]
<~ p=gq(ae.).

Moreover, DiKL is a lower bound of the KL divergence; see Appendix D.1 for a proof.

5.3 Diffusive Kullback-Leibler Divergence 87

clean KL KL at noise level 0.1 KL at noise level 0.5 KL at noise level 1.0 KL at noise level 5.0

log(o)
o

Figure 5.3 Heatmap of (log scale) R-KL and R-DiKL at different noise levels between a
Gaussian model (with mean parameter 1 and standard deviation parameter o) and a two-mode
mixture of Gaussians target distribution in 1D against different values of the model parameters
i and o. At lower noise levels (or in the extreme case, the standard R-KL), the divergence
is highly mode-seeking, with the model favouring either one of the two modes in the target
distribution. In contrast, the KL divergence becomes more mode-covering at higher noise
levels, encouraging the model to cover both modes in the target distribution.

5.3.2 Reverse DIiKL Encourages Mode-Covering

Unlike R-KL which has a mode-seeking nature, reverse DiKL (R-DiKL) promotes better
mode coverage. This section provides an intuitive explanation to illustrate how this is achieved.
Suppose that we have a 1D mixture of Gaussians (MoG) target with two components, whose
density is given by

pa(z) = ;N(:p|—3, 0.1%) + ;N(:v|3, 0.12). (5.20)

For simplicity, we fit the target py(z) with a 1D Gaussian model py(z) = N (z|y, o%), which
only contains two parameters § = {y, o }. This allows us to visualise the values of log R-KL
and log R-DiKL at different noise levels against these two parameters to develop a better
understanding of the reverse DiKL objective. The results are shown in Figure 5.3. It can
be seen that at lower noise levels (or in the extreme case, R-KL), the divergence is highly
mode-seeking, with the model favouring either one of the two modes in the target distribution
similar to the behaviour of R-KL. However, perhaps surprisingly, at higher noise levels, DiKL.
becomes more mass-covering, forcing the mean parameter y to converge towards the mean of
the two modes and the variance parameter o2 to cover both modes. This behaviour explains
why DiKL encourages the model to cover more modes: higher noise levels push the model to
explore adjacent modes, while lower noise levels prevent the model from forgetting previously

discovered modes and refine the models around these modes.

5.3.3 Training Neural Samplers with Reverse DiKL

This section presents a practical gradient estimator for training neural samplers with R-DiKL.

We focus on training neural samplers defined by a deep implicit model due to its flexibility (as

88 Diffusion-Inspired Training of Deep Generative Models for Enhanced Sampling

discussed in Section 2.3.2):

pole) = [3@ = fol2)pa(2) dz, (521)

where p.(z) = N (z|0,1) and fp : Z — X is a generator parameterised by a standard non-
invertible neural network. Unlike the conventional KL divergence which requires the model
pe () to have a valid density function (Arjovsky et al., 2017) as discussed in Section 2.3.2,
SKL and DiKL are well-defined even for singular distributions (e.g., Dirac delta), as discussed
in Zhang et al. (2020). Therefore, we can still train these deep implicit models using DiKL
even though the model density py(z) may not be well-defined.

We now explore how to train such a deep generative model py(z) to fit the unnormalised target
density p,(z) using R-DiKL, denoted as DiKLy (pyg||pq). For simplicity, we first consider
R-DiKL with a single kernel k;; the extension to a linear combination of multiple kernels is
straightforward. The R-DiKL between the model density py(x) and the target density py(x) is
defined as':

DiKLy, (po||pa) = KL(pg * k¢|[pa * k¢)

(5.22)
— /pQ(QJt) (10gp9(13t) — lngd(xt)) dxta

where py(x;) = [k(x|z)pe(z) dz and pg(x;) = [k(x| z)ps(z) dz. The integration over
pe () can be approximated using the Monte Carlo method by first sampling ' ~ py(x) from

the neural sampler model and then adding noise to obtain x; ~ k(xz|z’).

Inspired by Luo et al. (2024); Poole et al. (2022); Wang et al. (2023b), we can derive the
analytical gradient of R-DiKL in Equation (5.22) with respect to the model parameters 6:

V@DlKth (p9| |pd) = VQ KL(pe * kt| |pd * kt)
oz, (5.23)

= /p9<wt) (th logpe(ﬂft) - V:pt logpd(l't)) % d.’L't,

The derivation of Equation (5.23) can be found in Appendix D.2. The Jacobian term % can
be efficiently computed by the vector-Jacobian product (VJIP) with automatic differentiation.
However, both score functions in Equation (5.23), V., log ps(z;) and V,, logps(z;), are

intractable to compute directly.

To address this, we approximate these scores using denoising score matching (DSM) (Vincent,
2011) and mixed score identity (MSI) (De Bortoli et al., 2024; Phillips et al., 2024), respectively.

ITo avoid notation overloading, we slightly abuse p, to represent the density function for both the original
clean target density and the convolved noisy target density py * k;. We distinguish them by their arguments:
pa(x) denotes the original target density, while pg(z:) refers to the convolved density. This also applies to the
kernel k; and model density py.

5.3 Diffusive Kullback-Leibler Divergence 89

Specifically, we estimate the noisy model score V,, log pg(x;) by training a score network
with DSM using samples from the model, and estimate the noisy target score V,, log pa(x;)

by MSI with Monte Carlo estimation. Below, we explain these two estimators in detail.

Estimating the Noisy Model Score V,, log py(z;) with Denoising Score Matching

As discussed in Section 2.3.2, denoising score matching (DSM) (Vincent, 2011) has been
successfully used in training score-based diffusion models (Song et al., 2021b). In our case,
we can train a time-conditioned score network” s,(z;) to approximate V., log py(z;) by

minimising the DSM loss with respect to the surrogate score model parameters ¢:

Losm(0) = Evitypy k(o) AE)[|56(2) — Vi, log k(z|2)[?], (5.24)

The expectation can be approximated using the Monte Carlo method by sampling from the
neural sampler model z’ ~ py(x) followed by sampling z;, ~ k(x;|2"). Note that the model
parameters 6 are fixed in this stage. Once trained, we can plug s,(z;) into Equation (5.23) as

part of the gradient estimator for R-DiKL.

Estimating the Noisy Target Score V ,, log ps(x;) with Mixed Score Identity

To estimate the gradient defined in Equation (5.23), we also need to estimate the noisy target
score V, log py(x;). Since no samples from the target distribution py(z) are available, we
can no longer use DSM to estimate this score function. Fortunately, we have access to the
unnormalised target density and its score function V. log ps(z) = —V,E(z), which allows
us to estimate this score by target score identity (TSI) (De Bortoli et al., 2024).

Proposition 5.3.3 (Target Score Identity). For any translation-invariant convolution kernel

k(xi|z) = k(zy — ayx), we have

1
Vi, log pa(zy) = Q—/V:C log pa(x)pa(z|zy) dz, (5.25)
t

where py(z|x;) < k(xy|x)py(z) is the denoising posterior distribution.

The proof of Proposition 5.3.3 can be found in Appendix D.3.1. In practice, the TSI estimator
has larger variance when the Gaussian kernel k(z;|x) has larger variance, while the DSI
estimator from Proposition 2.3.1 exhibits higher variance when k(x,|t) has smaller variance.
To address this, De Bortoli et al. (2024); Phillips et al. (2024) propose a convex combination
of the DSI and TSI to interpolate between them, favouring TSI when k(z;|x) has smaller
variance and DSI when k(z,|z) has larger variance, thus minimising the overall variance of

the estimator. We refer to this estimator as the mixed score identity (MSI).

2For simplicity of notation, we drop the time argument ¢ in s4(z¢, t) and simply write s¢(;) instead.

90 Diffusion-Inspired Training of Deep Generative Models for Enhanced Sampling

Proposition 5.3.4 (Mixed Score Identity). Using a Gaussian convolution kernel k(z;|x) =
N (z¢|ayx, 02 1) with a variance-preserving (VP) scheme o? = 1 — a2, and a convex combina-

tion of TSI and DSI with coefficients o and 1 — o2, respectively, we have

Vo, logpa(z:) = /(at(x + V. logpa(z)) — z¢)pa(x|zs) da. (5.26)

The proof of Proposition 5.3.4 can be found in Appendix D.3.2. This identity estimates the
noisy target score V, log p(z;) based on the original clean target score V, log pg(x) which
can be directly evaluated. The resulting estimate can be plugged into Equation (5.23) as the
other part of the gradient estimator for R-DiKL.

However, in order to use this estimator, we also need to obtain samples from the denoising
posterior py(x|z;) to approximate the integration over z in Equation (5.26). We notice that the
denoising posterior distribution p,(x|z;) is proportional to the joint distribution over the clean
and noisy data: py(z, z;) = k(z¢|x)pa(x), taking the form

. 2
palelz,) o exp (—E(x) - M) , (5.27)

207
which has a tractable score (Chen et al., 2024b; Gao et al., 2021; Huang et al., 2024):

V. log () = ~V, E(z) - 2400 200, (5.28)

t
Therefore, common score-based sampler, such as HMC, MALA and AIS as introduced in
Section 2.1.2, can be directly employed to draw samples from the denoising posterior p(x|x;).
Notably, compared to sampling from the original target distribution py(x) o exp(—E(x)),
incorporating the additional quadratic term as shown in Equation (5.27) improves the Log-
Sobolev conditions, which significantly enhances the convergence speed of samplers based on

Langevin dynamics (Huang et al., 2024; Vempala and Wibisono, 2019).

It is worth noting that it is not crucial to have a perfect denoising posterior sampler. This
is because our method essentially works in a bootstrapping manner: the posterior samples
improve the model, and a better model in turn brings the posterior samples closer to the true
target. As a result, although we did not extensively tune the hyperparameters of our posterior
sampler in our experiments, we found that our method still worked well with only a few
MCMC steps in practice. Having said that, accurate posterior sampling may further improve

the convergence rate of the model.

5.3 Diffusive Kullback-Leibler Divergence 91

Algorithm 2 Training Neural Samplers with Reverse Diffusive KL (R-DiKL) Divergence

1: Input: target distribution py(z) o exp(—FE(x)), Gaussian kernel hyperparameters
{(ay,04)}]_,; the number Ny of training steps for the score network s, (z;); weight-
ing functions A(t) and w(t); randomly initialised model parameters 6, ¢.

2: repeat

3 # Inner loop: train the score network s4(x;) by DSM

4 foric[1,---, Nyl do

5: 2 pa(2), 4 fy(2)

6: t~U{1l,--- T}, e ~N(0,1)

7 T < QX + 04€

8 Update ¢ with VA (t)|sg(z:) — Va, log k(z4|2)]| > DSM training
9: end for
10: # Outer loop: train the neural sampler fy(z) by R-DiKL
W 2 epa()e e fol2)
12: t~U{1,--- T}t e~N(0,1I)
13: Ty = QX + 04€

14: ')~ pa(x|xy) > posterior sampling
150 dp+ 30 (ap(2'D + Vg pa(2'V)) —) > MSI estimator
16: <+ w(t) stopgrad(ss(z;) — dp) "z > surrogate loss for VJP

17: Update 0 with Vy/
18: until convergence
19: Output: neural sampler parameters ¢

Training Procedure

We summarise the whole procedure of training neural samplers with R-DiKL in Algorithm 2°.
In short, our training algorithm forms a nested loop.

* Inner loop: we train a surrogate time-conditioned score network s,(x) to estimate the

noisy model score V, log pyg(x;) by minimising the DSM loss.

* Outer loop: we first estimate the noisy target score V,, log pa(x;) with MSI and posterior
sampling, and then update the parameters ¢ of the neural sampler using the gradient as

in Equation (5.23) with the estimated noisy target score and noisy model score.

This results in an Expectation-Maximisation (EM) style training algorithm. It might be
tempting to think that this nested training procedure imposes a high computational burden.
Fortunately, we found that the inner loop typically converged within 50-100 steps in practice,

minimally affecting the overall training cost.

3For clarity, Algorithm 2 presents the training procedure with a batch size of 1.

92 Diffusion-Inspired Training of Deep Generative Models for Enhanced Sampling

5.4 Related Work

5.4.1 Neural Samplers

General One-Step Neural Samplers

Various approaches for training (non-invertible) one-step generators as neural samplers with
R-KL have been explored in the literature, which employ different approximate inference
techniques for gradient estimation, including score matching (SM) (Li and Turner, 2018; Luo
et al., 2023; Song et al., 2020), variational inference (VI) (Shi et al., 2018; Yin and Zhou, 2018;
Zhang et al., 2019) and Stein’s method (Hu et al., 2018). These methods typically struggle for
multi-modal target distributions due to the mode-seeking property of R-KL.

Flow-Based Neural Samplers

The first neural sampler which focuses on sampling from Boltzmann distributions is a flow-
based sampler called Boltzmann generator (Noé et al., 2019), which trains normalising flows
with R-KL and exact gradient estimation due to its tractable model density. It tends to
miss modes when the target distribution is multi-modal due to the limited expressivity of

normalising flows and the mode-seeking behaviour of R-KL.

Flow annealed importance sampling bootstrap (FAB) (Midgley et al., 2023) is the state-of-
the-art flow-based neural sampler, which is trained by minimising the alpha-2 divergence
Do—s(pd|lpe) o [pa(x)?/pe(x) da that exhibits mass-covering property (Minka, 2005) and
corresponds to the variance of the IS weight wis(x) = pa(z)/pe(x). FAB estimates this
intractable objective using AIS with the flow model density py(x) as the initial distribution
and r(z) o< pa(x)?/pe(z) as the target distribution, which minimises the variance of the IS
estimator for the alpha-2 divergence. Note that FAB employs a prioritised replay buffer to

memorise the regions that have been explored.

Diffusion-Based Neural Samplers

An increasing number of works have been exploring diffusion-based samplers. The Gibbs-
style sampler (Chen et al., 2024b; Grenioux et al., 2024; Zhang et al., 2023a) constructs an
iterative forward-backward sampling procedure between the original clean data space and
the noisy diffusion space to bridge distant modes in the target distribution. The path integral
sampler (PIS) (Zhang and Chen, 2022) and the denoising diffusion sampler (DDS) (Vargas
et al., 2023) align the forward and backward paths by optimising the KL divergence over
the entire path measure. GFlowNet-based samplers (Bengio et al., 2023; Zhang et al., 2024)

extend these approaches to objectives with local information, such as sub-trajectory balance

5.5 Empirical Evaluation 93

and detailed balance. Controlled Monte Carlo diffusions (CMCD) (Nusken et al., 2024) learns
an escorted transport between interpolants from the prior distribution to the target distribution
by matching the KL or log-variance divergence between the forward and backward path
measures. Non-equilibrium transport samplers (NETS) (Albergo and Vanden-Eijnden, 2024)
learn a similar escorted transport with physics-informed neural networks (Sun et al., 2024)
or action matching loss (Neklyudov et al., 2023). Further improvements include combining
these samplers with sequential Monte Carlo (Chen et al., 2025a), or incorporating MCMC
to improve buffer samplers (Sendera et al., 2024). However, all these methods typically
involve simulating an SDE with numerical integration during training, which is not scalable to

high-dimensional target distributions.

Iterated denoising energy matching (iDEM) (Akhound-Sadegh et al., 2024) trains a score
network to approximate the noisy target score V,, log ps(x;) estimated by TSI, which is one
of the most scalable diffusion-based neural samplers due to its simulation-free nature. It also
uses a reply buffer to balance exploration and exploitation.

5.4.2 Variational Score Distillation

Variational score distillation (VSD) is a promising approach to distil knowledge from pre-
trained diffusion models. VSD shares a similar idea to DiKL in the sense that it distils a
pre-trained diffusion model into a one-step generator by adding noise to the densities of
both models before computing the KL divergence, which has been successfully applied to
training 3D generative models (Poole et al., 2022; Wang et al., 2023b) and distilling diffusion
models (Luo et al., 2024; Xie et al., 2024). However, in VSD, the score functions of p; and
pq * k; are provided by a pre-trained diffusion model, which is different from our setting where
those score functions are estimated by MSI, as we only assume access to the unnormalised

target density without any ground-truth samples for pre-training such diffusion models.

5.5 Empirical Evaluation

This section presents empirical evaluation results for the performance of neural samplers
trained by R-DiKL as described in Algorithm 2 on a synthetic multi-modal target distribution
(Section 5.5.1) and three many-body particle systems (Section 5.5.2). Detailed experimental

setup for each experiment can be found in Appendix D.5.

5.5.1 Synthetic Multi-Modal Target Distribution

We compare R-DiKL with different types of state-of-the-art neural samplers on a mixture
of 40 Gaussians (MoG-40) target distribution with 40 modes in 2D following Midgley et al.

94 Diffusion-Inspired Training of Deep Generative Models for Enhanced Sampling

(a) Ground Truth (b) R-KL-SM

= ——————

(¢) R-KL-VI

——

(e) iDEM (f) R-DiKL

Figure 5.4 Visualisation of samples generated by all compared neural samplers on MoG-40.
We train each method for 2.5 hours, which allows all to converge. FAB and iDEM use replay
buffers as in Akhound-Sadegh et al. (2024); Midgley et al. (2023). The high-density regions
of this target are within [—50, 50]. All methods were trained on the original scale, except
for iDEM, which is normalised to [—1, 1] following Akhound-Sadegh et al. (2024). This
normalisation may simplify the task.

5.5 Empirical Evaluation 95

Table 5.1 Log density of samples generated by compared methods, evaluated on the ground-
truth target density of MoG-40. “True” indicates the log density of ground-truth samples from
the target distribution, which serves as a reference. We only report the evaluation methods that
can cover all the modes; see Figure 5.4 for a visualisation of samples generated by all baseline
methods.

Method True FAB i1DEM R-DiKL
logpg(z) -6.85 -10.74 -8.33 -7.21

(2023), which allows us to visually examine the mass-covering property of our method. The
baseline methods include R-KL with score matching (R-KL-SM) (Luo et al., 2023), R-KL
with variational upper bound (R-KL-VI) (Zhang et al., 2019), a flow-based sampler (FAB)
(Midgley et al., 2023), and a diffusion-based sampler iDEM) (Akhound-Sadegh et al., 2024).
Overall, our approach can cover all the modes and generate high-quality samples.

As shown in Figure 5.4, our approach achieves better sample quality than all baseline neural
samplers. R-KL-based samplers struggle to capture the majority of modes due to its mode-
seeking property. FAB captures all modes but exhibits heavy density connections between
modes due to the limited expressivity of normalising flows. This is in contrast to our sampler
which only requires using more flexible standard neural networks. As for iDEM, while its
samples do not exhibit such density connections, they look noisy. This is because iDEM is a
diffusion model which requires accurate score estimation across all noise levels (from the target
distribution towards a pure Gaussian distribution) to generate accurate samples. However, the
TSI score estimator in iDEM has high variance at larger noise levels. In contrast, our approach
samples directly from a one-step generator fy(z) and only uses Gaussian convolution kernels
to connect adjacent modes during training, allowing for a much smaller noise level and more
manageable variance. Table 5.1 shows the log density of samples generated by these methods,
confirming that our method achieves the best sampling performance.

5.5.2 Many-Body Particle Systems

Problem Setup

One important application of neural samplers is to generate samples from Boltzmann distri-
butions, where the target distribution defines the probability density that a physical system
will be in a certain state as a function of that state’s energy and the temperature of the system.
This type of neural sampler is also known as Boltzmann generator (No¢ et al., 2019). For
simplicity of notation, we will omit the temperature in the exponent and absorb it into the

energy function.

96 Diffusion-Inspired Training of Deep Generative Models for Enhanced Sampling

We will evaluate the performance of our neural sampler fy(z) as a Boltzmann generator to
generate samples from many-body particle systems, where the energy is defined over the
pairwise distances between n particles. These systems can be defined in either internal or
Cartesian coordinates. Note that for Cartesian coordinates, the energy of the system will
remain invariant if we apply any of the rotation, reflection, translation, and permutation
operations to the entire system. Formally, representing each configuration of the system by
a matrix X € R" 9 our target distribution py(X) is invariant to the product group of the

Euclidean group and the Symmetric group of degree n, i.e. G = E(d) x S,,.

This invariance presents a challenge to the training of neural samplers. Recall that our neural
sampler learns a mapping fy : Z — X, where X represents the space of system configurations,
and Z represents the latent space. If X includes configurations with symmetries but Z
does not account for these symmetries, the network would need to model every equivariant
configuration separately (e.g., the generator fy(z) would need to learn to assign the same
density for all configurations in each equivariant class respect to (), leading to inefficient

training and possibly poor generalisation.

On the other hand, one common approach is to parameterise the neural sampler fp(z) with an
equivariant graph neural network (EGNN) (Hoogeboom et al., 2022; Satorras et al., 2021),
ensuring that it is G-equivariant. In this case, the latent variable Z € R™*4= must have the
same dimensionality as X (i.e., d, = d, := d). We can show that as long as the distribution
over the latent space p.(Z) is G-invariant, the model density py(X) of a deep implicit model
defined by Equation (5.21) is G-invariant.

Proposition 5.5.1. Let the neural sampler fy : Z — X be a G-equivariant mapping. If the

distribution p,(Z) over the latent space Z is G-invariant, then the model density:
po(X) = [6(X = fu(2))p-(2)dZ, (5.29)

is also G-invariant.

The proof of Proposition 5.5.1 can be found in Appendix D.4.1. As a result, if we use the
standard Gaussian distribution as the prior for the latent variables, our neural samplers will
automatically enforce the desired invariance. This greatly reduces the challenges of training

neural samplers in the Cartesian coordinate.

However, another challenge arises from the translation operation. As noted by Midgley et al.
(2024), there does not exist a translation invariant probability measure in the Euclidean space.
Therefore, following Akhound-Sadegh et al. (2024); Hoogeboom et al. (2022); Midgley et al.
(2024); Satorras et al. (2021), we constrain both X and Z to be in the subspace of R"*? with

5.5 Empirical Evaluation 97

(a) Ground Truth (b) R-KL (c) FAB (d) iDEM (e) R-DiKL

Figure 5.5 2D marginal (1st and 3rd dimensions) of samples from MW-32. R-DiKL and FAB
manage to find all the modes with correct weights. Note that iDEM finds all modes but with
wrong weights. R-KL only captures one mode.

zero centre-of-mass (i.e., X '1 = Z "1 = 0). This allows us to embed the product group G =

E(d) x S, into an orthogonal group in the nd-dimensional space: E(d) x S,, < O(nd).

Having decided the neural network architecture for the neural sampler f, and tackled the
translation invariance, we now turn to the scoring network s,(X;) ~ Vx, log ps(X;) for esti-
mating the clean and noisy score functions of the neural sampler. According to Papamakarios
et al. (2021, Lemma 2), if G is a subgroup of the orthogonal group, then the gradient of a
G-invariant function is G-equivariant. Therefore, the score network s4(.X;) for the neural
sampler that defines a G-invariant distribution should be G-equivariant. To achieve this, we
model the score network s,(X;) with an EGNN and train it within the zero-centred subspace,

following Hoogeboom et al. (2022).

Note that when both the model and target density functions are G-invariant, the score of the log
density ratio between the model and the target (i.e., Vx, log po(X:) — Vx, log pa(X;)) which
appears in the gradient of R-DiKL as shown in Equation (5.23) will also be GG-equivariant.
Therefore, we also need to ensure that the Monte Carlo estimator of MSI for the noisy target
score Vi, log pqs(X;) is G-equivariant. Recall that the MSI estimator is given by:

Yy, log pa(X,) = / (au(X + Vi log pa(X)) — Xo)pa(X|X0)dX. (5.30)

Fortunately, this can be achieved by a broad class of Monte Carlo estimators under mild
conditions, including IS and AIS estimators, with different choices of MCMC samplers for
sampling the denoising posterior p;(X|X;), such as MALA and HMC. Detailed derivations
regarding the G-equivariance of Monte Carlo estimators can be found in Appendix D.4.2.

Many-Well-32 Potential in the Internal Coordinate

Midgley et al. (2023) introduced this Many-Well-32 (MW-32) potential in the internal coordi-
nate by stacking 2D Double-Well potential 16 times, forming a distribution with 2!6 modes

in total. Moreover, these modes carry different weights. Therefore, this target distribution

98 Diffusion-Inspired Training of Deep Generative Models for Enhanced Sampling

Ground Truth FAB iDEM
R-KL R-DiKL
0.1 A
N 8@ R-KL — o :
L IDEM| >, ’l
) n |
[7 . cC |
g' 8 Il h‘l
©
0 g F.AB fj \‘_'_
T T T 0.0 —=— — T —
0.2 0.4 0.6 25 50
Energy TVD Energy

Figure 5.6 (Left) Wasserstein-2 (V/-2) distance of samples and total variation distance (TVD)
for sample energy values on MW-32. R-DiKL and FAB clearly outperform iDEM and R-KL
in this evaluation. (Right) Histogram of sample energy values. Our approach outperforms
both FAB and iDEM. Note that although the R-KL yields better energy histogram, it collapses
to only one mode, as shown in Figure 5.5.

can assess whether a neural sampler can successfully cover all modes and simultaneously
capture their weights accurately. We compare R-DiKL with FAB and iDEM, which are the
state-of-the-art flow-based and diffusion-based neural samplers on these target distributions.

In addition, we include R-KL as a baseline for reference.

We report the Wasserstein-2 (VV-2) distances between samples generated by neural samplers
and ground-truth samples. We also evaluate the energy values of the samples and report
the total variation distance (TVD) between the distributions of energy values of ground-
truth samples and samples generated by neural samplers. Note that both metrics have their
limitations: V-2 tends to be less sensitive to noisy samples, which can be particularly
detrimental in some many-body particle systems. Conversely, the energy TVD is less sensitive
to mode coverage. To provide a comprehensive evaluation, we plot both metrics together in
Figure 5.6, which shows that overall our method and FAB clearly outperform iDEM and R-KL.
in this evaluation. We also visualise the samples along two selected marginal dimensions to
assess mode coverage in Figure 5.5, showing that only our approach and FAB can find all

modes with correct weights.

5.5 Empirical Evaluation 929

1 Ground Truth [1 FAB [_1 iDEM R-DiKL
>
£0.21 0.5 -
c
)
Q
0.0 . . 0.0 -
-25 =20 -15 -10 2 4 6
Energy Interatomic Distance
(a) DW-4
>
B 0.05 1
()
)
0.00 - = 0 .
-60 —-40 -20 0 2 4
Energy Interatomic Distance
(b) LJ-13

Figure 5.7 Histograms of sample energy values and interatomic distances on DW-4 and LJ-13.
R-DiKL achieves comparable performance to iDEM on both targets with only one function
evaluation (NFE) at sampling time, while iDEM requires 1,000 NFEs.

1.0 1.0
8 0.8 8 0.8
C c
© ©
-+ L
i) k)
T kel
£ 067 9 067
€ €
(e} o
Bl -
S 0.4 5 0.4
-~ -
£ £
E 0.2 E 0.2
0.0+— " " " : : : : : 0.0 +— " : : : : :
0 250 500 750 1000 1250 1500 1750 2000 0 500 1000 1500 2000 2500 3000
Training iteration Training iteration
(a) DW-4 (b) LJ-13

Figure 5.8 Total variation distance (TVD) for interatomic distance of R-DiKL samples as a
function of the training iteration under different seeds on the DW-4 and LJ-13 potentials.

100 Diffusion-Inspired Training of Deep Generative Models for Enhanced Sampling

Table 5.2 Wasserstein-2 (VV-2) distance of samples, and total variation distances (TVDs) of
sample energy values and interatomic distances for all compared methods on DW-4 and LJ-13.
Each metric value is calculated using 5,000 samples and repeated ten times. The mean and
standard deviation values are reported.

Cartesian DW-4 Cartesian LJ-13
Sample W-2 Energy TVD Distance TVD Sample W-2 Energy TVD Distance TVD

FAB 1.554 +0.015 0.224 £ 0.008 0.097 £ 0.005 4.938 £0.009 0.902 £ 0.010 0.252 + 0.002
iDEM 1593 +0.012 0.197 £0.010 0.103 +£0.005 4.172 £ 0.007 0.306 £ 0.013 0.044 £ 0.001
R-DiKL 1.581 £ 0.026 0.167 £ 0.012 0.101 + 0.006 4.233 + 0.008 0.239 £+ 0.019 0.042 £ 0.002

Method

Double-Well-4 and Lennard-Jones-13 Potentials in the Cartesian Coordinate

Kohler et al. (2020) introduced Double-Well-4 (DW-4) and Lennard-Jones-13 (LJ-13) po-
tentials in the Cartesian coordinate to access the performance of neural samplers trained on
invariant target distributions. Specifically, the target energy is invariant to the product group
G =E(d) x S,, where n = 4,d = 2 for DW-4 and n = 13, d = 3 for LJ-13. Note that LJ-13
is more complex than DW-4 in the sense that its energy landscape includes prohibitive regions
that can destabilise training. However, DW-4 has its own challenges since it has two modes
with different weights, and capturing these these two modes with correct weights can be a
challenging task for neural samplers. We therefore evaluate our approach and other baselines

on both of them for a comprehensively evaluation.

Again, we compare R-DIKL with state-of-the-art flow-based neural samplers FAB and
diffusion-based neural samplers iDEM. We report Wasserstein-2 (VV-2) distance for samples,
TVD for sample energy values and interatomic distance in Table 5.2. We also visualise
histograms of sample energy values and interatomic distance in Figure 5.7, which shows that
our method achieves competitive performance to both FAB and iDEM on DW-4, and notably
outperforms FAB on LJ-13. The results demonstrate that our method achieves comparable or
better performance than state-of-the-art flow-based and diffusion-based neural samplers.

Additionally, Figure 5.8 shows that the training process of our approach is robust across
different random seeds in the sense that all runs converge to similar results in the end despite

some fluctuations during training.

Training and Sampling Speed

We report the wall-clock time of both training and sampling for all compared neural samplers
in Table 5.3. Notably, our method achieves faster training and sampling speed than both FAB
and iDEM. FAB depends on a large normalising flow with limited expressiveness, which leads
to significantly longer training times, particularly for complex tasks like L.J-13. In contrast, our

approach maintains consistent training times across different tasks. On the other hand, iDEM

5.6 Discussion 101

Table 5.3 Training and sampling wall-clock times for FAB, iDEM and our sampler, measured
on a single NVIDIA A100 (80GB) GPU. We omit the sampling times for FAB on DW-4 and
LJ13 as it is implemented in JAX with JIT compilation, making direct comparison with the
other methods implemented in PyTorch not feasible. However, we expect FAB to have slightly
slower sampling times than R-DiKL due to its larger flow architecture.

Method
FAB iDEM R-DiKL

MW-32 35h 3.5h 2.5h
Training DW-4 4.5h 4.5h 0.9h
LJ-13 21.5h 6.5h 6.5h

MW-32 0.01s 7.2s 0.01s
DW-4 - 2.6s 0.01s
LJ-13 - 19.7s 0.02s

Phase Potential

Batch Sampling
(1,000 samples)

is a diffusion model that requires intensive computation for sampling by simulating the SDE

denoising diffusion process, which is orders of magnitudes slower than our approach.

Summary of Results

Overall, our method achieves similar or better sampling performance compared to other types
of state-of-the-art Boltzmann generators, FAB and iDEM, while having faster training and
sampling speed. Furthermore, we would like to highlight that, unlike iDEM and FAB which
use replay buffers to balance between exploration and exploitation, our approach does not
rely on such replay buffer, thus offering a cleaner, more straightforward and easier-to-extend

solution to Boltzmann generators.

5.6 Discussion

In this chapter, we presented a new paradigm for training neural samplers parameterised
by deep implicit models using reverse diffusive KL (R-DiKL) divergence. We derived a
tractable gradient estimator for practical model training which accounts for the symmetries of
physical systems. The resulting training algorithm provides a simple yet efficient approach to
training neural samplers with the mass-covering property for multi-modal target distributions.
We demonstrated its effectiveness on both synthetic multi-modal target distributions and
Boltzmann distributions for many-body particles systems. Our approach matched or even
outperformed state-of-the-art flow-based and diffusion-based neural samplers with improved

training and sampling efficiency and without relying on replay buffers.

The limitations of our approach and their implications are discussed below.

102 Diffusion-Inspired Training of Deep Generative Models for Enhanced Sampling

2 2
1+ 1 .
Xt Xt
[) o
0 0
-1 -1 . .
_2 T T T _2 T T T
-2 -1 0 1 2 -2 -1 0 1 2
(a) pa(z) (b) pa(x|xy)

Figure 5.9 Visualisation of the density of an MoG-4 target distribution with unequal weights
for the four Gaussian components. (a) Density heatmap of the target distribution p,(z), a clean
sample x and a noisy sample z; obtained with Gaussian convolution parameters oy = 1,0, = 1.
(b) Density heatmap of the denoising posterior distribution py(x|z;).

1. The density pg(x) of our neural sampler is intractable, since we employ a deep implicit
model with a non-linear and non-invertible generator fy(z). Compared to FAB, although
we have a more flexible generator, we cannot use importance re-weighting to correct the

potential bias of generated samples as we do not have access to the sample density.

2. Although our one-step generator fy(z) achieved significantly faster sampling speed
than diffusion-based samplers, it has limited model flexibility compared to multi-step
diffusion models such as iDEM. Consequently, it is more difficult for our model to
handle target distributions with complicated energy landscapes such as L.J-55.

3. For the two many-body system potentials in the Cartesian coordinate (i.e., DW-4 and
LJ-13), training can be unstable especially near convergence, and we had to employ

some heuristic criteria to perform early stopping as discussed in Appendix D.5.

4. Denoising posterior sampling for the MSI estimator can be a bottleneck in our training
procedure, since it requires running an MCMC sampler to generate samples from
the denoising posterior distribution p,(z|z;) at each training iteration. The MCMC
sampling procedure may have a slow mixing speed for complicated target distributions
pa(z). This is because when py(x) has very disconnected modes, the resulting denoising
posterior py(x|z,) may still exhibit a multi-modal nature; see Figure 5.9 for an example.

Nevertheless, we note that it is not essential to have a perfect denoising posterior sampler,

5.6 Discussion 103

since the posterior samples will get closer to the true targert as our model improves
during training. We would also like to point out that most diffusion-based or diffusion-
inspired samplers have similar issues, since there is no ground-truth samples available

to train a denoiser or score network in the sampling setting.

5. Our approach focused on deriving a diffusive version of the KL divergence for training
neural samplers with better mode-covering properties. In fact, there are other types
of measures, such as Wasserstein metric or the more general Bregman divergence,
which may inherently have better mode connectivity in theory. However, training
neural samplers with those measures would require samples from the target distribution
pa(z), which is unavailable in the sampling setting. One could obtain such samples
by directly running MCMC samplers for the target distribution, but this would be very
inefficient compared to our approach that only requires sampling from the denoising
posterior py(x|x;), which allows for provably faster convergence speed for MCMC
samplers (Huang et al., 2024; Vempala and Wibisono, 2019).

Chapter 6

Conclusions and Future Work

6.1 Thesis Summary

This thesis focused on designing new machine learning methods to bridge deep learning
and probabilistic inference, demonstrating that the strengths of methods in these two fields
can be combined to enhance each other. Chapter 3 and Chapter 4 investigated how to
leverage probabilistic inference techniques to improve the data efficiency and identifiability
of representation learning for deep neural networks on small datasets. Chapter 5 explored
the possibility of leveraging generative deep learning approaches to enhance the efficiency
of sampling-based probabilistic inference. The proposed new techniques were evaluated on
real-world molecular modelling tasks, including molecular property prediction and molecular
configuration sampling. Below, we provide a thorough summary of the work presented in each
chapter.

Chapter 3 introduced a data-efficient meta-learning approach, ADKF-IFT, which utilises deep
neural networks to extract useful feature representations shared across tasks and enables
probabilistic inference for the adaptive task-specific regression heads, aiming to improve the
robustness of deep neural networks on small datasets. The meta-learning problem was formu-
lated within a novel bilevel optimisation framework, which provides a unifying framework
that generalises previous methods for training deep kernel GPs, eliminating the overfitting and
underfitting issues in prior work. The bilevel optimisation problem was efficiently solved using
the implicit function theorem. We proposed a specific instantiation of the general ADKF-IFT
framework, which adapts all GP base kernel parameters and meta-learns all neural network
feature extractor parameters. This specific model was empirically evaluated on few-shot
molecular property prediction and optimisation tasks, showcasing its superior performance on

real-world chemical problems with small datasets compared to diverse baseline models.

106 Conclusions and Future Work

Chapter 4 explored the theoretical properties of neural network representations learned across
multiple tasks via a probabilistic approach, with a particular emphasis on recovering canonical
feature representations that align with the underlying ground-truth data generating process from
observed data. We demonstrated that linear identifiability could be achieved through a standard
multi-task regression neural network (MTRN). Additionally, under certain assumptions of task
structures, we established that point-wise identifiability may also be attainable with a multi-task
linear causal model (MTLCM), providing a much stronger identifiability guarantee than prior
work. Moreover, our approach enabled exact maximum marginal likelihood estimation, which
simplifies and stabilises the training procedure compared to previous approaches. Notably,
MTLCM is capable of distinguishing between causal and spurious latent variables as a side
product. Furthermore, our model can be deployed to extract canonical feature representations
at test time, since it does not require conditioning on the target variable during inference. The
identifiability theory presented in this chapter were validated through experiments on both

synthetic tasks and real-world molecular property prediction tasks.

Chapter 5 investigated a complementary perspective to Chapters 3 and 4, focusing on improv-
ing the efficiency of probabilistic inference with deep learning. Drawing inspiration from
recent advancements in generative deep learning, we introduced a novel method for fitting deep
generative models to unnormalised probability distributions using diffusion-based techniques
but without ground-truth samples. Such deep generative models were referred to as neural
samplers. We proposed to train neural samplers with the R-DiKL divergence, which encour-
ages the models to explore all high density regions within the support of the target distribution.
We derived a tractable gradient estimator for practical model training with this objective. We
demonstrated that the proposed training algorithm enabled training neural samplers capable
of generating accurate independent samples from both synthetic multi-modal distributions
and real-world many-body particle systems in one step. Notably, the one-step neural samplers
trained by our approach achieved comparable or superior performance than state-of-the-art
flow-based and diffusion-based neural samplers with significantly faster training and inference

speed and without relying on extra engineering tricks such as reply buffers.

6.2 Future Research Directions

This section outlines potential directions for future research, with the goal of inspiring future
work that builds upon the new techniques and insights presented in this thesis. We begin by
proposing concrete extensions for the individual work in Chapters 3-5, which can potentially
further improve their performance and applicability. We then move on to a broader discussion
of other promising research directions that explore the synergistic interplay between deep

learning and probabilistic inference.

6.2 Future Research Directions 107

Individual Work

Although the ADKF-IFT approach presented in Chapter 3 achieved state-of-the-art perfor-
mance on a variety of molecular property prediction and optimisation tasks, there are some
aspects which can be improved. First, we used a single lengthscale parameter for all input fea-
tures to the GP base kernel. Using automatic relevance determination (ARD) in the base kernel
may improve the model performance, since ARD allows the GP model to automatically select
relevant features for each individual task. The potential overfitting problems may be reduced
by assuming a sparse prior over lengthscales or by learning a low-dimensional manifold for
them. Second, we only tested one specific instantiation of the general ADKF-IFT framework,
which adapts the GP base kernel parameters to each task and meta-learns all feature extractor
parameters. Adapting the last few layers of the feature extractor in addition to the GP base
kernel to each task may further improve the model performance, which can be achieved
by allowing small deviations across tasks according to a meta-learned prior on the feature
extractor parameters, e.g., as described in Chen et al. (2020). Third, we followed Patacchiola
et al. (2020) to treat binary classification as 4-1 label regression, which can impede the model
performance. Better few-shot classification performance may be achieved by adopting a more
principled approximate inference strategy for few-shot GP classification, e.g., P6lya-Gamma
data augmentation (Snell and Zemel, 2021) or Laplace approximation (Kim and Hospedales,
2021). Finally, it would be interesting to investigate how to inject domain expertise in drug

discovery into the GP base kernel with hand-curated features and kernel combinations.

When modelling the underlying data generating process in Chapter 4, we assumed that the
spurious correlation between the spurious latent factors and the target variable was due to an
anti-causal relationship. However, this assumption does not capture all possible non-causal
correlations between latent factors and the target variable. Therefore, it may be interesting for
future work to incorporate the potential pairwise interactions between latent factors into the
modelling assumptions. In addition, while our approach achieved state-of-the-art identifiability
results on real-world molecular data, our preliminary investigation indicated that the resulting
canonical feature representations did not lead to improved molecular property prediction
performance. One possible explanation is that a random split of training and test tasks does
not create a valid out-of-distribution evaluation setting. Consequently, models which rely on
spurious anti-causal features may achieve similar or even better predictive performance on
in-distribution test tasks. For future work, it would be valuable to design a meaningful out-of-
distribution task split to better access the advantages of our proposed method in real-world
problems. Moreover, it would be interesting to investigate the physical meanings for each of
the recovered causal and spurious canonical latent factors, which may provide fresh insights
for understanding the underlying biochemical mechanism of drugs.

108 Conclusions and Future Work

For the one-step neural samplers trained with R-DiKL in Chapter 5, we provided a clean
training paradigm without relying on any particular engineering tricks such as reply buffers.
Having said that, for future work, it might be beneficial to employ a replay buffer similar to
the ones used in FAB and iDEM to balance exploration and exploitation and stabilise training.
Since we do not have access to the model density of our neural samplers, we could instead
minimise the Fisher divergence evaluated at samples from a buffer. Moreover, we mentioned
that posterior sampling could be a bottleneck of the proposed training algorithm, especially for
complicated target distributions. If we do have access to some ground-truth samples = ~ py(x)
from the target distribution, we may use them as proposals for efficient posterior sampling,
since the target distribution p,(z) and the denoising posterior p,(z|z;) often exhibit significant
overlap as shown in Figure 5.9. The IS weight for this importance sampling procedure is
simply proportional to the Gaussian convolution kernel:

o palaln)
slr) = 22

x k(xy|z). (6.1)
This suggests a promising direction for future work: exploring how to combine a small
amount of ground-truth target samples to accelerate the posterior sampling procedure when
training neural samplers with R-DiKL. Furthermore, it is worth noting that our method requires
training a new neural sampler from scratch for each target distribution. However, it practice,
many target distributions share similar properties (e.g., Lennard-Jones potentials with varying
numbers of particles). For future work, it would be valuable to explore methods that enable
rapid adaptation of pre-trained neural samplers to related target distributions, potentially
leveraging meta-learning and multi-task learning techniques from Chapter 3 and Chapter 4 to

improve training efficiency and model generalisation.

Broader Discussion

More broadly, the synergies between deep learning and probabilistic inference open up exciting
research opportunities beyond what has been explored in this thesis. For instance, while
AlphaFold (Abramson et al., 2024; Jumper et al., 2021) provides a deep learning framework
that enables highly accurate prediction of static protein folding structures from 1D amino
acid sequences, it cannot sample all possible 3D structures from the underlying Boltzmann
distributions. This limitation is significant, since access to diverse and accurate samples from
the underlying Boltzmann distributions is essential for estimating key physical quantities that
describe the macroscopic behaviours of protein dynamics. Therefore, a promising direction is
to leverage probabilistic inference approaches to develop principled deep generative models
that can efficiently produce accurate independent samples of protein configurations following
the underlying Boltzmann distribution of any given 1D amino acid sequence.

6.2 Future Research Directions 109

Another interesting direction would be to investigate how deep generative models can be
integrated into the probabilistic inference framework to enhance uncertainty quantification. For
instance, in molecular property prediction, the predictive posterior distribution may not only be
uncertain but also be multi-modal. Common approximate probabilistic inference approaches
for BNNSs, such as Laplace’s approximation and variational inference, often underestimate
the uncertainty and fail to capture most modes in the posterior predictive distribution. It
would be valuable to explore how to leverage diffusion models to improve the quality of
uncertainty estimates in such scenarios, since they are powerful tools for approximating multi-
modal probability distributions and offer a natural way to incorporate conditioning variables
(Dhariwal and Nichol, 2021; Ho and Salimans, 2021), which makes them well-suited for
capturing the multi-modality and uncertainty of the posterior predictive distributions for deep

neural networks.

One important caveat is that the significance of well-defined benchmarks and well-documented
baselines is often overlooked. Arguably, the rapid progress in the computer vision community
would not have been possible without standardised benchmarks such as ImageNet (Deng
et al., 2009), which provided a transparent common ground for evaluating new models and
quantifying advancements. Similarly, in order to make meaningful progress in bridging
deep learning and probabilistic inference, it is crucial to design rigorous benchmarks that
can accurately reflect how these methods would be applied in real-world applications and
to develop reproducible baselines with open-source implementations and carefully tuned
hyperparameters. The FS-Mol benchmark (Stanley et al., 2021) used in Chapter 3 serves as a
strong example of such an effort, offering a well-curated benchmark for evaluating real-world
few-shot molecular property prediction performance, which enables fair and comprehensive
comparisons across a diverse set of representative baseline methods and encourages progress
in developing data-efficient machine learning algorithms. Without such initiatives, it would be

challenging to assess progress and identify truly promising methods.

References

Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel,
Olaf Ronneberger, Lindsay Willmore, Andrew J. Ballard, Joshua Bambrick, et al. Accurate
structure prediction of biomolecular interactions with AlphaFold 3. Nature, 630(8016):
493-500, 2024.

Hagit Achdout, Anthony Aimon, Elad Bar-David, Haim Barr, Amir Ben-Shmuel, James
Bennett, Vitaliy A. Bilenko, Vitaliy A. Bilenko, Melissa L. Boby, Bruce Borden, et al. Open
science discovery of oral non-covalent SARS-CoV-2 main protease inhibitor therapeutics.
bioRxiv, 2022.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

Tara Akhound-Sadegh, Jarrid Rector-Brooks, Joey Bose, Sarthak Mittal, Pablo Lemos, Cheng-
Hao Liu, Marcin Sendera, Siamak Ravanbakhsh, Gauthier Gidel, Yoshua Bengio, et al.
Iterated denoising energy matching for sampling from Boltzmann densities. In International
Conference on Machine Learning, 2024.

Michael S Albergo and Eric Vanden-Eijnden. NETS: A non-equilibrium transport sampler.
arXiv preprint arXiv:2410.02711, 2024.

Anna Allen, Stratis Markou, Will Tebbutt, James Requeima, Wessel P Bruinsma, Tom R
Andersson, Michael Herzog, Nicholas D Lane, Matthew Chantry, J Scott Hosking, et al.
End-to-end data-driven weather prediction. Nature, pages 1-3, 2025.

Han Altae-Tran, Bharath Ramsundar, Aneesh S. Pappu, and Vijay S. Pande. Low data drug
discovery with one-shot learning. ACS Central Science, 3:283 — 293, 2017.

Javier Antoran. Scalable Bayesian inference in the era of deep learning: From Gaussian
processes to deep neural networks. PhD thesis, University of Cambridge, 2024.

Michael Arbel, Alex Matthews, and Arnaud Doucet. Annealed flow transport Monte Carlo. In
International Conference on Machine Learning, pages 318-330. PMLR, 2021.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial
networks. In International Conference on Machine Learning, pages 214-223. PMLR, 2017.

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk mini-
mization. arXiv preprint arXiv:1907.02893, 2019.

112 References

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. Wav2vec 2.0:
A framework for self-supervised learning of speech representations. Advances in neural
information processing systems, 33:12449-12460, 2020.

Fan Bao, Chongxuan Li, Jun Zhu, and Bo Zhang. Analytic-DPM: an analytic estimate of the
optimal reverse variance in diffusion probabilistic models. In International Conference on
Learning Representations, 2022.

David Barber. Bayesian reasoning and machine learning. Cambridge University Press, 2012.

David Barber and Christopher M Bishop. Ensemble learning in Bayesian neural networks.
Nato ASI Series F Computer and Systems Sciences, 168:215-238, 1998.

Ilyes Batatia, David P Kovacs, Gregor Simm, Christoph Ortner, and Gébor Csanyi. MACE:
Higher order equivariant message passing neural networks for fast and accurate force fields.
Advances in neural information processing systems, 35:11423—-11436, 2022.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius
Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan
Faulkner, et al. Relational inductive biases, deep learning, and graph networks. arXiv
preprint arXiv:1806.01261, 2018.

Yoshua Bengio. Gradient-based optimization of hyperparameters. Neural computation, 12(8):
1889-1900, 2000.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and
new perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):
1798-1828, 2013.

Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J Hu, Mo Tiwari, and Emmanuel
Bengio. GFlowNet foundations. Journal of Machine Learning Research, 24(210):1-55,
2023.

James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang,
Juntang Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better
captions. Technical Report, 2023.

Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, and Qi Tian. Accurate
medium-range global weather forecasting with 3d neural networks. Nature, 619(7970):
533-538, 2023.

Christopher M Bishop. Pattern recognition and machine learning, volume 4. Springer, 2006.

Christopher M Bishop and Hugh Bishop. Deep learning: Foundations and concepts. Springer
Nature, 2023.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncer-
tainty in neural network. In International conference on machine learning, pages 1613—-1622.
PMLR, 2015.

Cristian Bodnar, Wessel P Bruinsma, Ana Lucic, Megan Stanley, Anna Allen, Johannes
Brandstetter, Patrick Garvan, Maik Riechert, Jonathan A Weyn, Haiyu Dong, et al. A
foundation model for the earth system. Nature, pages 1-8, 2025.

References 113

Edwin V Bonilla, Kian Chai, and Christopher Williams. Multi-task Gaussian process predic-
tion. Advances in neural information processing systems, 20, 2007.

John Bradshaw, Alexander G de G Matthews, and Zoubin Ghahramani. Adversarial examples,
uncertainty, and transfer testing robustness in Gaussian process hybrid deep networks. arXiv
preprint arXiv:1707.02476, 2017.

Jack Brady, Roland S Zimmermann, Yash Sharma, Bernhard Scholkopf, Julius Von Kiigelgen,
and Wieland Brendel. Provably learning object-centric representations. In International
Conference on Machine Learning, pages 3038-3062. PMLR, 2023.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and
deep locally connected networks on graphs. In International Conference on Learning
Representations, 2014.

Roberto Calandra, Jan Peters, Carl E Rasmussen, and Marc Peter Deisenroth. Manifold
Gaussian processes for regression. In 2016 International Joint Conference on Neural
Networks (IJCNN), 2016.

Rich Caruana. Multitask learning. Machine learning, 28:41-75, 1997.

Da Chen, Yuefeng Chen, Yuhong Li, Feng Mao, Yuan He, and Hui Xue. Self-supervised
learning for few-shot image classification. In ICASSP 2021-2021 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 1745-1749. IEEE,
2021.

Junhua Chen, Lorenz Richter, Julius Berner, Denis Blessing, Gerhard Neumann, and Anima
Anandkumar. Sequential controlled Langevin diffusions. In International Conference on
Learning Representations, 2025a.

Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li,
Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, et al. WavLLM: Large-scale self-supervised
pre-training for full stack speech processing. IEEE Journal of Selected Topics in Signal
Processing, 16(6):1505-1518, 2022.

Wenlin Chen and Hong Ge. Neural characteristic activation analysis and geometric param-
eterization for ReLU networks. Advances in Neural Information Processing Systems, 37,
2024.

Wenlin Chen, Austin Tripp, and José Miguel Herndndez-Lobato. Meta-learning adaptive deep
kernel Gaussian processes for molecular property prediction. In International Conference
on Learning Representations, 2023.

Wenlin Chen, Julien Horwood, Juyeon Heo, and José Miguel Hernandez-Lobato. Leveraging
task structures for improved identifiability in neural network representations. Transactions
on Machine Learning Research, 2024a.

Wenlin Chen, Mingtian Zhang, Brooks Paige, José Miguel Hernandez-Lobato, and David
Barber. Diffusive Gibbs sampling. In International Conference on Machine Learning, pages
7731-7747. PMLR, 2024b.

Wenlong Chen, Wenlin Chen, Lapo Rastrelli, and Yingzhen Li. Your image is secretly the last
frame of a pseudo video. In ICLR 2025 Workshop on Deep Generative Model in Machine
Learning: Theory, Principle and Efficacy, 2025b.

114 References

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel.
InfoGAN: Interpretable representation learning by information maximizing generative
adversarial nets. Advances in neural information processing systems, 29, 2016.

Yutian Chen, Abram L Friesen, Feryal Behbahani, Arnaud Doucet, David Budden, Matthew
Hoffman, and Nando de Freitas. Modular meta-learning with shrinkage. Advances in Neural
Information Processing Systems, 33:2858-2869, 2020.

Kyunghyun Cho, Bart van Merriénboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder—
decoder for statistical machine translation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 1724—1734. Associa-
tion for Computational Linguistics, 2014.

Ross M Clarke, Elre Talea Oldewage, and José Miguel Hernandez-Lobato. Scalable one-pass
optimisation of high-dimensional weight-update hyperparameters by implicit differentiation.
In International Conference on Learning Representations, 2022.

Pierre Comon. Independent component analysis, a new concept? Signal processing, 36(3):
287-314, 1994.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Lio, and Petar Veli¢kovi¢. Principal

neighbourhood aggregation for graph nets. Advances in neural information processing
systems, 33:13260-13271, 2020.

Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer,
and Philipp Hennig. Laplace redux - effortless Bayesian deep learning. Advances in neural
information processing systems, 34:20089-20103, 2021.

Valentin De Bortoli, Michael Hutchinson, Peter Wirnsberger, and Arnaud Doucet. Target
score matching. arXiv preprint arXiv:2402.08667, 2024.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248-255. IEEE, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Proceedings of the 2019
conference of the North American chapter of the association for computational linguistics:
human language technologies, volume 1 (long and short papers), pages 4171-4186, 2019.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANs on image synthesis.
Advances in neural information processing systems, 34:8780-8794, 2021.

Lauro Langosco di Langosco, Vincent Fortuin, and Heiko Strathmann. Neural variational

gradient descent. In Fourth Symposium on Advances in Approximate Bayesian Inference,
2022.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real NVP.
In International Conference on Learning Representations, 2017.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for
image recognition at scale. In International Conference on Learning Representations, 2021.

References 115

Simon Duane, Anthony D Kennedy, Brian J Pendleton, and Duncan Roweth. Hybrid Monte
Carlo. Physics letters B, 195(2):216-222, 1987.

Alexandre Duval, Simon V Mathis, Chaitanya K Joshi, Victor Schmidt, Santiago Miret,
Fragkiskos D Malliaros, Taco Cohen, Pietro Lid, Yoshua Bengio, and Michael Bron-
stein. A hitchhiker’s guide to geometric GNNs for 3D atomic systems. arXiv preprint
arXiv:2312.07511, 2023.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel,
Al4n Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning
molecular fingerprints. Advances in neural information processing systems, 28, 2015.

Cian Eastwood, Alexander Robey, Shashank Singh, Julius Von Kiigelgen, Hamed Hassani,
George J Pappas, and Bernhard Scholkopf. Probable domain generalization via quantile
risk minimization. Advances in Neural Information Processing Systems, 35:17340—17358,
2022.

Bradley Efron. Tweedie’s formula and selection bias. Journal of the American Statistical
Association, 106(496):1602-1614, 2011.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast

adaptation of deep networks. In International Conference on Machine Learning, pages
1126-1135. PMLR, 2017.

Alexander 1J Forrester, Andras Sébester, and Andy J Keane. Multi-fidelity optimization
via surrogate modelling. Proceedings of the royal society a: mathematical, physical and
engineering sciences, 463(2088):3251-3269, 2007.

Vincent Fortuin. Priors in Bayesian deep learning: A review. International Statistical Review,
90(3):563-591, 2022.

Peter I Frazier. A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.

Daan Frenkel and Berend Smit. Understanding molecular simulation: from algorithms to
applications. Elsevier, 2023.

Marco Fumero, Florian Wenzel, Luca Zancato, Alessandro Achille, Emanuele Rodola, Stefano
Soatto, Bernhard Scholkopf, and Francesco Locatello. Leveraging sparse and shared
feature activations for disentangled representation learning. Advances in Neural Information
Processing Systems, 36:27682-27698, 2023.

Yarin Gal. Uncertainty in deep learning. PhD thesis, University of Cambridge, 2016.

Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, and Diederik P Kingma. Learning energy-
based models by diffusion recovery likelihood. In International Conference on Learning
Representations, 2021.

Miguel Garcia-Ortegén, Gregor NC Simm, Austin J Tripp, José Miguel Hernandez-Lobato,
Andreas Bender, and Sergio Bacallado. DOCKSTRING: easy molecular docking yields
better benchmarks for ligand design. Journal of chemical information and modeling, 62
(15):3486-3502, 2022.

116 References

Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David Saxton,
Murray Shanahan, Yee Whye Teh, Danilo Rezende, and SM Ali Eslami. Conditional neural
processes. In International Conference on Machine Learning, pages 1704—1713. PMLR,
2018.

Damien Garreau, Wittawat Jitkrittum, and Motonobu Kanagawa. Large sample analysis of the
median heuristic. arXiv preprint arXiv:1707.07269, 2017.

Charles J Geyer and Elizabeth A Thompson. Annealing Markov chain Monte Carlo with
applications to ancestral inference. Journal of the American Statistical Association, 90(431):
909-920, 1995.

Zoubin Ghahramani. Probabilistic machine learning and artificial intelligence. Nature, 521
(7553):452-459, 2015.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl.
Neural message passing for quantum chemistry. In International Conference on Machine
Learning, pages 1263—1272. PMLR, 2017.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
International Conference on Artificial Intelligence and Statistics, pages 315-323. PMLR,
2011.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in
neural information processing systems, 27, 2014.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in graph
domains. In Proceedings. 2005 IEEE international joint conference on neural networks,
volume 2, pages 729-734, 2005.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The
Llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

Ulf Grenander and Michael I Miller. Representations of knowledge in complex systems.
Journal of the Royal Statistical Society: Series B (Methodological), 56(4):549-581, 1994.

Louis Grenioux, Maxence Noble, Marylou Gabrié, and Alain Oliviero Durmus. Stochastic
localization via iterative posterior sampling. In International Conference on Machine
Learning, pages 16337-16376. PMLR, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. DeepSeek-R1: Incentivizing reasoning capability
in LLMs via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Zhichun Guo, Chuxu Zhang, Wenhao Yu, John Herr, Olaf Wiest, Meng Jiang, and Nitesh V
Chawla. Few-shot graph learning for molecular property prediction. In Proceedings of the
web conference 2021, pages 2559-2567, 2021.

John Gurland. On regularity conditions for maximum likelihood estimators. Scandinavian
Actuarial Journal, 1954(1):71-76, 1954.

References 117

Johannes Hachmann, Roberto Olivares-Amaya, Sule Atahan-Evrenk, Carlos Amador-Bedolla,
Roel S Sanchez-Carrera, Aryeh Gold-Parker, Leslie Vogt, Anna M Brockway, and Alan
Aspuru-Guzik. The Harvard clean energy project: large-scale computational screening and
design of organic photovoltaics on the world community grid. The Journal of Physical
Chemistry Letters, 2(17):2241-2251, 2011.

Hermanni Hilva, Sylvain Le Corff, Luc Lehéricy, Jonathan So, Yongjie Zhu, Elisabeth Gassiat,
and Aapo Hyvarinen. Disentangling identifiable features from noisy data with structured
nonlinear ica. Advances in Neural Information Processing Systems, 34:1624—1633, 2021.

Kam Hamidieh. Superconductivty Data. UCI Machine Learning Repository, 2018.

James Harrison, John Willes, and Jasper Snoek. Variational Bayesian last layers. In Interna-
tional Conference on Learning Representations, 2024.

W Keith Hastings. Monte Carlo sampling methods using Markov chains and their applications.
Oxford University Press, 1970.

Jiajun He, Wenlin Chen, Mingtian Zhang, David Barber, and José Miguel Herndndez-Lobato.
Training neural samplers with reverse diffusive KL divergence. In International Conference
on Artificial Intelligence and Statistics. PMLR, 2025.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770-778, 2016.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (GELUS). arXiv preprint
arXiv:1606.08415, 2016.

Jeanny Herault and Christian Jutten. Space or time adaptive signal processing by neural
network models. In AIP conference proceedings, volume 151, pages 206-211. American
Institute of Physics, 1986.

José Miguel Herndndez-Lobato and Ryan Adams. Probabilistic backpropagation for scalable
learning of Bayesian neural networks. In International conference on machine learning,
pages 1861-1869. PMLR, 2015.

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan
Kianinejad, Md Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling
is predictable, empirically. arXiv preprint arXiv:1712.00409, 2017.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. Beta-VAE: Learning basic visual concepts with
a constrained variational framework. International Conference on Learning Representations,

2017.

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep
Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. Deep
neural networks for acoustic modeling in speech recognition: The shared views of four
research groups. IEEFE Signal processing magazine, 29(6):82-97, 2012.

Geoffrey E Hinton and Russ R Salakhutdinov. Using deep belief nets to learn covariance
kernels for Gaussian processes. Advances in neural information processing systems, 20,
2007.

118 References

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In NeurIPS 2021 Workshop
on Deep Generative Models and Downstream Applications, 2021.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840-6851, 2020.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 9
(8):1735-1780, 1997.

Matthew D Hoffman, Andrew Gelman, et al. The No-U-Turn sampler: adaptively setting path
lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res., 15(1):1593-1623, 2014.

Emiel Hoogeboom, Victor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant

diffusion for molecule generation in 3d. In International Conference on Machine Learning,
pages 8867-8887. PMLR, 2022.

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdi-
nov, and Abdelrahman Mohamed. HuBERT: Self-supervised speech representation learning

by masked prediction of hidden units. IEEE/ACM transactions on audio, speech, and
language processing, 29:3451-3460, 2021.

Tianyang Hu, Zixiang Chen, Hanxi Sun, Jincheng Bai, Mao Ye, and Guang Cheng. Stein
neural sampler. arXiv preprint arXiv:1810.03545, 2018.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. In International Conference
on Learning Representations, 2020.

Xunpeng Huang, Hanze Dong, Yifan HAO, Yian Ma, and Tong Zhang. Reverse diffusion
Monte Carlo. In International Conference on Learning Representations, 2024.

Ferenc Huszéar. Variational inference using implicit distributions. arXiv preprint
arXiv:1702.08235, 2017.

Aapo Hyvirinen. Estimation of non-normalized statistical models by score matching. Journal
of Machine Learning Research, 6(4), 2005.

Aapo Hyvirinen and Petteri Pajunen. Nonlinear independent component analysis: Existence
and uniqueness results. Neural networks, 12(3):429-439, 1999.

Aapo Hyvarinen, Hiroaki Sasaki, and Richard Turner. Nonlinear ICA using auxiliary variables
and generalized contrastive learning. In International Conference on Artificial Intelligence
and Statistics, pages 859-868. PMLR, 2019.

Leif Jacobson, James Stevenson, Farhad Ramezanghorbani, Steven Dajnowicz, and Karl
Leswing. Leveraging multitask learning to improve the transferability of machine learned
force fields. ChemRxiv, 2023.

Wengong Jin, Connor Coley, Regina Barzilay, and Tommi Jaakkola. Predicting organic
reaction outcomes with Weisfeiler-Lehman network. Advances in neural information
processing systems, 30, 2017.

Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization of
expensive black-box functions. Journal of Global optimization, 13(4):455-492, 1998.

References 119

Robert O Jones. Density functional theory: Its origins, rise to prominence, and future. Reviews
of modern physics, 87(3):897-923, 2015.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Zidek, Anna Potapenko, et al.
Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873):583-589,
2021.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of
diffusion-based generative models. Advances in neural information processing systems, 35:
26565-26577, 2022.

Steven Kearnes, Kevin McCloskey, Marc Berndl, Vijay Pande, and Patrick Riley. Molecular
graph convolutions: moving beyond fingerprints. Journal of computer-aided molecular
design, 30(8):595-608, 2016.

Marc C Kennedy and Anthony O’Hagan. Predicting the output from a complex computer
code when fast approximations are available. Biometrika, 87(1):1-13, 2000.

Ilyes Khemakhem, Diederik Kingma, Ricardo Monti, and Aapo Hyvarinen. Variational
autoencoders and nonlinear iICA: A unifying framework. In International Conference on
Artificial Intelligence and Statistics, pages 2207-2217. PMLR, 2020a.

Ilyes Khemakhem, Ricardo Monti, Diederik Kingma, and Aapo Hyvarinen. ICE-BeeM:
Identifiable conditional energy-based deep models based on nonlinear ICA. Advances in
Neural Information Processing Systems, 33:12768—12778, 2020b.

Jongmin Kim, Taesup Kim, Sungwoong Kim, and Chang Dong Yoo. Edge-labeling graph
neural network for few-shot learning. 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 11-20, 2019.

Minyoung Kim and Timothy Hospedales. Gaussian process meta few-shot classifier learning
via linear discriminant laplace approximation. arXiv preprint arXiv:2111.05392, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. In International
Conference on Learning Representations, 2013.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
Advances in neural information processing systems, pages 10215-10224, 2018.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2017.

Polina Kirichenko, Pavel Izmailov, and Andrew Gordon Wilson. Last layer re-training is
sufficient for robustness to spurious correlations. In International Conference on Learning
Representations, 2023.

120 References

Bohdan Kivva, Goutham Rajendran, Pradeep Ravikumar, and Bryon Aragam. Identifiability
of deep generative models without auxiliary information. Advances in Neural Information
Processing Systems, 35:15687-15701, 2022.

Gregory R. Koch. Siamese neural networks for one-shot image recognition. In /ICML deep
learning workshop, volume 2, 2015.

Jonas Kohler, Leon Klein, and Frank Noé. Equivariant flows: exact likelihood generative

learning for symmetric densities. In International Conference on Machine Learning, pages
5361-5370. PMLR, 2020.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep

convolutional neural networks. Advances in neural information processing systems, 25,
2012.

David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas,
Dinghuai Zhang, Remi Le Priol, and Aaron Courville. Out-of-distribution generaliza-
tion via risk extrapolation (rex). In International Conference on Machine Learning, pages
5815-5826. PMLR, 2021.

Sébastien Lachapelle, Pau Rodriguez, Yash Sharma, Katie E Everett, Rémi Le Priol, Alexandre
Lacoste, and Simon Lacoste-Julien. Disentanglement via mechanism sparsity regularization:
A new principle for nonlinear ICA. In Conference on Causal Learning and Reasoning,
pages 428-484. PMLR, 2022.

Sébastien Lachapelle, Tristan Deleu, Divyat Mahajan, loannis Mitliagkas, Yoshua Bengio,
Simon Lacoste-Julien, and Quentin Bertrand. Synergies between disentanglement and spar-
sity: Generalization and identifiability in multi-task learning. In International Conference
on Machine Learning, pages 18171-18206. PMLR, 2023.

Brenden Lake, Ruslan Salakhutdinov, Jason Gross, and Joshua Tenenbaum. One shot learning
of simple visual concepts. In Proceedings of the annual meeting of the cognitive science
society, volume 33, 2011.

Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato,
Ferran Alet, Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, et al. Learning
skillful medium-range global weather forecasting. Science, 382(6677):1416-1421, 2023.

J. Larsen, L.K. Hansen, C. Svarer, and M. Ohlsson. Design and regularization of neural
networks: the optimal use of a validation set. In Neural Networks for Signal Processing VI.
Proceedings of the 1996 IEEE Signal Processing Society Workshop, pages 62-71, 1996.

Miguel Lazaro-Gredilla and Anibal R Figueiras-Vidal. Marginalized neural network mixtures
for large-scale regression. IEEE transactions on neural networks, 21(8):1345-1351, 2010.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. Meta-learning
with differentiable convex optimization. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2019.

Yin Tat Lee, Ruoqi Shen, and Kevin Tian. Structured logconcave sampling with a restricted
Gaussian oracle. In Conference on Learning Theory, pages 2993-3050. PMLR, 2021.

References 121

Daniel Levy, Matt D. Hoffman, and Jascha Sohl-Dickstein. Generalizing Hamiltonian Monte
Carlo with neural networks. In International Conference on Learning Representations,
2018.

Sarah Lewis, Tim Hempel, José Jiménez-Luna, Michael Gastegger, Yu Xie, Andrew Y. K.
Foong, Victor Garcia Satorras, Osama Abdin, Bastiaan S. Veeling, Iryna Zaporozhets, et al.
Scalable emulation of protein equilibrium ensembles with generative deep learning. bioRxiv,
pages 2024-12, 2024.

Yingzhen Li and Richard E. Turner. Gradient estimators for implicit models. In International
Conference on Learning Representations, 2018.

Yujia Li, Richard Zemel, Marc Brockschmidt, and Daniel Tarlow. Gated graph sequence
neural networks. In International Conference on Learning Representations, 2016.

Dong C Liu and Jorge Nocedal. On the limited memory BFGS method for large scale
optimization. Mathematical programming, 45(1):503-528, 1989.

Feng Liu, Wenkai Xu, Jie Lu, and Danica J Sutherland. Meta two-sample testing: Learning
kernels for testing with limited data. Advances in Neural Information Processing Systems,
34:5848-5860, 2021.

Jenny Liu, Aviral Kumar, Jimmy Ba, Jamie Kiros, and Kevin Swersky. Graph normalizing
flows. Advances in Neural Information Processing Systems, 32, 2019a.

Jeremiah Liu, Zi Lin, Shreyas Padhy, Dustin Tran, Tania Bedrax Weiss, and Balaji Lakshmi-
narayanan. Simple and principled uncertainty estimation with deterministic deep learning
via distance awareness. Advances in Neural Information Processing Systems, 33:7498-7512,
2020.

Yanbin Liu, Juho Lee, Minseop Park, Saehoon Kim, Eunho Yang, Sungju Hwang, and Yi Yang.
Learning to propagate labels: Transductive propagation network for few-shot learning. In
International Conference on Learning Representations, 2019b.

Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard
Scholkopf, and Olivier Bachem. Challenging common assumptions in the unsupervised
learning of disentangled representations. In International Conference on Machine Learning,
pages 4114-4124. PMLR, 2019.

Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters
by implicit differentiation. In International Conference on Artificial Intelligence and
Statistics, pages 1540-1552. PMLR, 2020.

Chaochao Lu, Yuhuai Wu, José Miguel Herndndez-Lobato, and Bernhard Scholkopf. Invari-
ant causal representation learning for out-of-distribution generalization. In International
Conference on Learning Representations, 2022.

Jelena Luketina, Mathias Berglund, Klaus Greff, and Tapani Raiko. Scalable gradient-based
tuning of continuous regularization hyperparameters. In International Conference on
Machine Learning, pages 2952-2960. PMLR, 2016.

Weijian Luo, Boya Zhang, and Zhihua Zhang. Entropy-based training methods for scalable
neural implicit samplers. Advances in Neural Information Processing Systems, 36, 2023.

122 References

Weijian Luo, Tianyang Hu, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and Zhihua Zhang.
Dift-Instruct: A universal approach for transferring knowledge from pre-trained diffusion
models. Advances in Neural Information Processing Systems, 36, 2024.

Lukasz Maziarka, Tomasz Danel, Stawomir Mucha, Krzysztof Rataj, Jacek Tabor, and
Stanistaw Jastrzgbski. Molecule attention transformer. arXiv preprint arXiv:2002.08264,
2020.

David Mendez, Anna Gaulton, A Patricia Bento, Jon Chambers, Marleen De Veij, Eloy Félix,
Maria Paula Magariiios, Juan F Mosquera, Prudence Mutowo, Michal Nowotka, et al.
ChEMBL: towards direct deposition of bioassay data. Nucleic acids research, 47(D1):
D930-D9%40, 2019.

Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H Teller, and
Edward Teller. Equation of state calculations by fast computing machines. The journal of
chemical physics, 21(6):1087-1092, 1953.

Laurence Midgley, Vincent Stimper, Javier Antordn, Emile Mathieu, Bernhard Scholkopf, and
José Miguel Hernandez-Lobato. SE (3) equivariant augmented coupling flows. Advances in
Neural Information Processing Systems, 36, 2024.

Laurence Illing Midgley, Vincent Stimper, Gregor NC Simm, Bernhard Scholkopf, and
José Miguel Herndndez-Lobato. Flow annealed importance sampling bootstrap. In Interna-
tional Conference on Learning Representations, 2023.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. In International Conference on Learning Representations,

2013.

Erik G Miller, Nicholas E Matsakis, and Paul A Viola. Learning from one example through
shared densities on transforms. In Proceedings IEEE Conference on Computer Vision and
Pattern Recognition. CVPR 2000 (Cat. No. PR0O0662), volume 1, pages 464—471. IEEE,
2000.

Thomas Minka. Divergence measures and message passing. Technical report, Microsoft
Research, 2005.

Hossein Mobahi and John W Fisher. On the link between Gaussian homotopy continuation
and convex envelopes. In Energy Minimization Methods in Computer Vision and Pattern
Recognition: 10th International Conference, EMMCVPR 2015, Hong Kong, China, January
13-16, 2015. Proceedings 10, pages 43—-56. Springer, 2015.

J Harry Moore, Daniel J Cole, and Gabor Csanyi. Computing hydration free energies of small
molecules with first principles accuracy. arXiv preprint arXiv:2405.18171, 2024.

Hiroshi Morioka, Hermanni Hélvé, and Aapo Hyvarinen. Independent innovation analysis
for nonlinear vector autoregressive process. In International Conference on Artificial
Intelligence and Statistics, pages 1549-1557. PMLR, 2021.

Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

Radford M Neal. Bayesian Learning for Neural Networks. PhD thesis, University of Toronto,
1996.

References 123

Radford M Neal. Annealed importance sampling. Statistics and computing, 11:125-1309,
2001.

Radford M Neal et al. MCMC using Hamiltonian dynamics. Handbook of Markov chain
Monte Carlo, 2(11):2, 2011.

Kirill Neklyudov, Rob Brekelmans, Daniel Severo, and Alireza Makhzani. Action matching:
Learning stochastic dynamics from samples. In International Conference on Machine
Learning, pages 25858-25889. PMLR, 2023.

Frank Noé, Simon Olsson, Jonas Kohler, and Hao Wu. Boltzmann generators: Sampling
equilibrium states of many-body systems with deep learning. Science, 365(6457):eaaw1147,
2019.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural
samplers using variational divergence minimization. Advances in neural information
processing systems, 29, 2016.

Nikolas Nusken, Francisco Vargas, Shreyas Padhy, and Denis Blessing. Transport meets
variational inference: Controlled Monte Carlo diffusions. In International Conference on
Learning Representations, 2024.

Sebastian W. Ober and Carl E. Rasmussen. Benchmarking the neural linear model for
regression. In Second Symposium on Advances in Approximate Bayesian Inference, 2019.

Sebastian W Ober, Carl E Rasmussen, and Mark van der Wilk. The promises and pitfalls of
deep kernel learning. In Uncertainty in Artificial Intelligence, pages 1206-1216. PMLR,
2021.

Zijing Ou, Mingtian Zhang, Andi Zhang, Tim Z. Xiao, Yingzhen Li, and David Barber.
Improving probabilistic diffusion models with optimal diagonal covariance matching. In
The Thirteenth International Conference on Learning Representations, 2025.

Art B. Owen. Monte Carlo theory, methods and examples. 2013.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji
Lakshminarayanan. Normalizing flows for probabilistic modeling and inference. Journal of
Machine Learning Research, 22(57):1-64, 2021.

Eunbyung Park and Junier B Oliva. Meta-curvature. Advances in neural information processing
systems, 32, 2019.

Massimiliano Patacchiola, Jack Turner, Elliot J Crowley, Michael O’Boyle, and Amos J
Storkey. Bayesian meta-learning for the few-shot setting via deep kernels. Advances in
Neural Information Processing Systems, 33:16108-16118, 2020.

Massimiliano Patacchiola, John Bronskill, Aliaksandra Shysheya, Katja Hofmann, Sebastian
Nowozin, and Richard Turner. Contextual squeeze-and-excitation for efficient few-shot
image classification. Advances in Neural Information Processing Systems, 35:36680-36692,
2022.

Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopad-
hyay, Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli,
et al. FourCastNet: A global data-driven high-resolution weather model using adaptive
fourier neural operators. arXiv preprint arXiv:2202.11214, 2022.

124 References

Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In International
Conference on Machine Learning, pages 737-746. PMLR, 2016.

Ronan Perry, Julius Von Kiigelgen, and Bernhard Scholkopf. Causal discovery in heteroge-
neous environments under the sparse mechanism shift hypothesis. Advances in Neural
Information Processing Systems, 35:10904-10917, 2022.

Angus Phillips, Hai-Dang Dau, Michael John Hutchinson, Valentin De Bortoli, George
Deligiannidis, and Arnaud Doucet. Particle denoising diffusion sampler. In International
Conference on Machine Learning, pages 40688—40724. PMLR, 2024.

Matthias Poloczek, Jialei Wang, and Peter Frazier. Multi-information source optimization.
Advances in neural information processing systems, 30, 2017.

Emilia Pompe, Chris Holmes, and Krzysztof Latuszynski. A framework for adaptive MCMC
targeting multimodal distributions. The Annals of Statistics, 48(5):2930-2952, 2020.

Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. DreamFusion: Text-to-3D
using 2D Diffusion. In International Conference on Learning Representations, 2022.

Lutz Prechelt. Early stopping-but when? In Neural Networks: Tricks of the trade, pages
55-69. Springer, 1998.

Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with
implicit gradients. Advances in neural information processing systems, 32, 2019.

Liva Ralaivola, Sanjay J Swamidass, Hiroto Saigo, and Pierre Baldi. Graph kernels for
chemical informatics. Neural networks, 18(8):1093-1110, 2005.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole von Lilienfeld.
Quantum chemistry structures and properties of 134 kilo molecules. Scientific Data, 1,
2014.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine
Learning. Adaptive Computation and Machine Learning. MIT Press, Cambridge, MA,
USA, January 2006.

Maria Reichenbach and P Morrison. The direction of time. Physics Today, 9(10):24-28, 1956.

Danilo Jimenez Rezende, George Papamakarios, Sébastien Racaniere, Michael Albergo,
Gurtej Kanwar, Phiala Shanahan, and Kyle Cranmer. Normalizing flows on tori and spheres.
In International Conference on Machine Learning, pages 8083—8092. PMLR, 2020.

Severi Rissanen, RuiKang OuYang, Jiajun He, Wenlin Chen, Markus Heinonen, Arno Solin,
and José Miguel Hernandez-Lobato. Progressive tempering sampler with diffusion. In
International Conference on Machine Learning. PMLR, 2025.

Herbert E Robbins. An empirical Bayes approach to statistics. In Breakthroughs in Statistics:
Foundations and basic theory, pages 388—394. Springer, 1992.

Gareth O Roberts and Osnat Stramer. Langevin diffusions and Metropolis-Hastings algorithms.
Methodology and computing in applied probability, 4:337-357, 2002.

Gareth O Roberts and Richard L Tweedie. Exponential convergence of Langevin distributions
and their discrete approximations. Bernoulli, pages 341-363, 1996.

References 125

Geoffrey Roeder, Luke Metz, and Durk Kingma. On linear identifiability of learned repre-
sentations. In International Conference on Machine Learning, pages 9030-9039. PMLR,
2021.

David Rogers and Mathew Hahn. Extended-connectivity fingerprints. Journal of chemical
information and modeling, 50(5):742-754, 2010.

Mateo Rojas-Carulla, Bernhard Scholkopf, Richard Turner, and Jonas Peters. Invariant models
for causal transfer learning. The Journal of Machine Learning Research, 19(1):1309-1342,
2018.

Lars Ruddigkeit, Ruud Van Deursen, Lorenz C Blum, and Jean-Louis Reymond. Enumeration
of 166 billion organic small molecules in the chemical universe database gdb-17. Journal
of chemical information and modeling, 52(11):2864-2875, 2012.

Warren S. Sarle. Stopped training and other remedies for overfitting. In Proceedings of the
27th Symposium on the Interface of Computing Science and Statistics, pages 352—-360, 1995.

Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E(n) equivariant graph neural
networks. In International Conference on Machine Learning, pages 9323-9332. PMLR,
2021.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfar-
dini. The graph neural network model. /EEE transactions on neural networks, 20(1):61-80,
2008.

Bernhard Scholkopf. Causality for machine learning. In Probabilistic and Causal Inference:
The Works of Judea Pearl, page 765-804. Association for Computing Machinery, New York,
NY, USA, 1 edition, 2022. ISBN 9781450395861.

Bernhard Scholkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner,
Anirudh Goyal, and Yoshua Bengio. Toward causal representation learning. Proceedings of
the IEEE, 109(5):612-634, 2021.

Kristof T Schiitt, Farhad Arbabzadah, Stefan Chmiela, Klaus R Miiller, and Alexandre
Tkatchenko. Quantum-chemical insights from deep tensor neural networks. Nature commu-
nications, 8(1):1-8, 2017.

Marcin Sendera, Minsu Kim, Sarthak Mittal, Pablo Lemos, Luca Scimeca, Jarrid Rector-
Brooks, Alexandre Adam, Yoshua Bengio, and Nikolay Malkin. Improved off-policy
training of diffusion samplers. Advances in Neural Information Processing Systems, 37:
81016-81045, 2024.

Jiaxin Shi, Shengyang Sun, and Jun Zhu. Kernel implicit variational inference. In International
Conference on Learning Representations, 2018.

Martin Simonovsky and Nikos Komodakis. GraphVAE: Towards generation of small graphs
using variational autoencoders. In Artificial Neural Networks and Machine Learning—
ICANN 2018: 27th International Conference on Artificial Neural Networks, Rhodes, Greece,
October 4-7, 2018, Proceedings, Part 1 27, pages 412—-422. Springer, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In International Conference on Learning Representations, 2015.

126 References

Ankur Sinha, Pekka Malo, and Kalyanmoy Deb. A review on bilevel optimization: From
classical to evolutionary approaches and applications. IEEE Transactions on Evolutionary
Computation, 22(2):276-295, 2017.

Jake Snell and Richard Zemel. Bayesian few-shot classification with one-vs-each Pdlya-
Gamma augmented Gaussian processes. In International Conference on Learning Repre-
sentations, 2021.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning.
Advances in neural information processing systems, 30, 2017.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsu-
pervised learning using nonequilibrium thermodynamics. In International Conference on
Machine Learning, pages 2256-2265. PMLR, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In
International Conference on Learning Representations, 2021a.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. Advances in Neural Information Processing Systems, 32, 2019.

Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced score matching: A scalable
approach to density and score estimation. In Uncertainty in Artificial Intelligence, pages
574-584. PMLR, 2020.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In
International Conference on Learning Representations, 2021b.

Megan Stanley, John F Bronskill, Krzysztof Maziarz, Hubert Misztela, Jessica Lanini, Marwin
Segler, Nadine Schneider, and Marc Brockschmidt. FS-Mol: A few-shot learning dataset of
molecules. In Thirty-fifth Conference on Neural Information Processing Systems Datasets
and Benchmarks Track (Round 2), 2021.

Teague Sterling and John J Irwin. Zinc 15-ligand discovery for everyone. Journal of chemical
information and modeling, 55(11):2324-2337, 2015.

Jonathan M Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, Andres Cubillos-Ruiz, Nina M
Donghia, Craig R MacNair, Shawn French, Lindsey A Carfrae, Zohar Bloom-Ackermann,
et al. A deep learning approach to antibiotic discovery. Cell, 180(4):688-702, 2020.

Jingtong Sun, Julius Berner, Lorenz Richter, Marius Zeinhofer, Johannes Miiller, Kamyar
Azizzadenesheli, and Anima Anandkumar. Dynamical measure transport and neural PDE
solvers for sampling. arXiv preprint arXiv:2407.07873, 2024.

Nikola Surjanovic, Saifuddin Syed, Alexandre Bouchard-Coté, and Trevor Campbell. Parallel
tempering with a variational reference. Advances in Neural Information Processing Systems,
35:565-577, 2022.

Robert H Swendsen and Jian-Sheng Wang. Replica Monte Carlo simulation of spin-glasses.
Physical review letters, 57(21):2607, 1986.

Kevin Swersky, Jasper Snoek, and Ryan P Adams. Multi-task Bayesian optimization. Advances
in neural information processing systems, 26, 2013.

References 127

Saifuddin Syed, Alexandre Bouchard-Coté, George Deligiannidis, and Arnaud Doucet. Non-
reversible parallel tempering: a scalable highly parallel MCMC scheme. Journal of the
Royal Statistical Society Series B: Statistical Methodology, 84(2):321-350, 2022.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In International
Conference on Learning Representations, 2014.

Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B Tenenbaum, and Phillip Isola. Rethinking
few-shot image classification: a good embedding is all you need? In European Conference
on Computer Vision, pages 266-282. Springer, 2020.

Petru Tighineanu, Kathrin Skubch, Paul Baireuther, Attila Reiss, Felix Berkenkamp, and Julia
Vinogradska. Transfer learning with Gaussian processes for Bayesian optimization. In
International Conference on Artificial Intelligence and Statistics, pages 6152-6181. PMLR,
2022.

Michael E Tipping and Christopher M Bishop. Probabilistic principal component analysis.
Journal of the Royal Statistical Society Series B: Statistical Methodology, 61(3):611-622,
1999.

Michalis Titsias. Variational learning of inducing variables in sparse Gaussian processes. In
Artificial intelligence and statistics, pages 567-574. PMLR, 2009.

Marcin Tomczak, Siddharth Swaroop, Andrew Foong, and Richard Turner. Collapsed varia-

tional bounds for Bayesian neural networks. Advances in Neural Information Processing
Systems, 34:25412-25426, 2021.

Prudencio Tossou, Basile Dura, Francois Laviolette, Mario Marchand, and Alexandre Lacoste.
Adaptive deep kernel learning. arXiv preprint arXiv:1905.12131, 2019.

Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Utku Evci, Kelvin Xu, Ross
Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, and Hugo Larochelle.
Meta-dataset: A dataset of datasets for learning to learn from few examples. In International
Conference on Learning Representations, 2020.

Austin Tripp, Wenlin Chen, and José Miguel Herndndez-Lobato. An evaluation framework
for the objective functions of de novo drug design benchmarks. In ICLR 2022 Workshop on
Machine Learning for Drug Discovery (MLDD), 2022.

Austin Tripp, Sergio Bacallado, Sukriti Singh, and José Miguel Hernandez-Lobato. Tanimoto
random features for scalable molecular machine learning. Advances in Neural Information
Processing Systems, 36:33656-33686, 2023.

Brian Trippe and Richard Turner. Overpruning in variational Bayesian neural networks. arXiv
preprint arXiv:1801.06230, 2018.

Richard Eric Turner and Maneesh Sahani. Two problems with variational expectation maximi-
sation for time-series models. Bayesian time series models, 2011.

Joost van Amersfoort, Lewis Smith, Andrew Jesson, Oscar Key, and Yarin Gal. On feature
collapse and deep kernel learning for single forward pass uncertainty. arXiv preprint
arXiv:2102.11409, 2021.

128 References

Francisco Vargas, Will Sussman Grathwohl, and Arnaud Doucet. Denoising diffusion samplers.
In International Conference on Learning Representations, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017.

Santosh Vempala and Andre Wibisono. Rapid convergence of the unadjusted Langevin
algorithm: Isoperimetry suffices. Advances in neural information processing systems, 32,
2019.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural
computation, 23(7):1661-1674, 2011.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks
for one shot learning. Advances in neural information processing systems, 29, 2016.

Martin J Wainwright, Michael I Jordan, et al. Graphical models, exponential families, and
variational inference. Foundations and Trends in Machine Learning, 1(1-2):1-305, 2008.

P Walters. We need better benchmarks for machine learning in drug discovery. Practical
Cheminformatics, 2023.

Hanchen Wang, Tianfan Fu, Yuanqgi Du, Wenhao Gao, Kexin Huang, Ziming Liu, Payal
Chandak, Shengchao Liu, Peter Van Katwyk, Andreea Deac, et al. Scientific discovery in
the age of artificial intelligence. Nature, 620(7972):47-60, 2023a.

Yaqing Wang, Abulikemu Abuduweili, Quanming Yao, and Dejing Dou. Property-aware rela-
tion networks for few-shot molecular property prediction. Advances in Neural Information
Processing Systems, 34:17441-17454, 2021.

Yuanhao Wang, Guodong Zhang, and Jimmy Ba. On solving minimax optimization locally: A
follow-the-ridge approach. In International Conference on Learning Representations, 2020.

Zeyu Wang, Tianyi Jiang, Yao Lu, Xiaoze Bao, Shanqing Yu, Bin Wei, and Qi Xuan.
Knowledge-enhanced relation graph and task sampling for few-shot molecular property
prediction. arXiv preprint arXiv:2405.15544, 2024.

Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu.
ProlificDreamer: High-fidelity and diverse text-to-3D generation with variational score
distillation. Advances in Neural Information Processing Systems, 36, 2023b.

Joe Watson, Jihao Andreas Lin, Pascal Klink, Joni Pajarinen, and Jan Peters. Latent derivative

Bayesian last layer networks. In International Conference on Artificial Intelligence and
Statistics, pages 1198—-1206. PMLR, 2021.

Oren F. Webb, Tommy J. Phelps, Paul R. Bienkowski, Philip M. Digrazia, David C. White,
and Gary S. Sayler. Enzyme nomenclature, 1992.

David Weininger. SMILES, a chemical language and information system. 1. introduction to
methodology and encoding rules. Journal of chemical information and computer sciences,

28(1):31-36, 1988.

David Weininger. SMILES. 3. depict. graphical depiction of chemical structures. Journal of
chemical information and computer sciences, 30(3):237-243, 1990.

References 129

David Weininger, Arthur Weininger, and Joseph L Weininger. SMILES. 2. algorithm for
generation of unique SMILES notation. Journal of chemical information and computer
sciences, 29(2):97-101, 1989.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient Langevin dynamics.
In International Conference on Machine Learning, pages 681-688, 2011.

Frank Wilcoxon. Individual comparisons by ranking methods. In Breakthroughs in statistics,
pages 196-202. Springer, 1992.

Matthew Willetts and Brooks Paige. I don’t need u: Identifiable non-linear ICA without side
information. arXiv preprint arXiv:2106.05238, 2021.

Andrew G Wilson, Zhiting Hu, Russ R Salakhutdinov, and Eric P Xing. Stochastic variational
deep kernel learning. Advances in Neural Information Processing Systems, 2016a.

Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P Xing. Deep kernel
learning. In Artificial intelligence and statistics, pages 370-378. PMLR, 2016b.

Martin Wistuba and Josif Grabocka. Few-shot Bayesian optimization with deep kernel
surrogates. In International Conference on Learning Representations, 2021.

Hao Wu, Jonas Kohler, and Frank Noé. Stochastic normalizing flows. Advances in Neural
Information Processing Systems, 33:5933-5944, 2020.

Wen Wu, Wenlin Chen, Chao Zhang, and Phil Woodland. Modelling variability in human
annotator simulation. In Findings of the Association for Computational Linguistics ACL
2024, pages 1139-1157, 2024.

Zhenqgin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. MoleculeNet: a benchmark for molecular machine
learning. Chemical science, 9(2):513-530, 2018.

Sirui Xie, Zhisheng Xiao, Diederik P Kingma, Tingbo Hou, Ying Nian Wu, Kevin Patrick
Murphy, Tim Salimans, Ben Poole, and Ruiqi Gao. EM distillation for one-step diffusion
models. Advances in Neural Information Processing Systems, 37, 2024.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

Mingzhang Yin and Mingyuan Zhou. Semi-implicit variational inference. In International
Conference on Machine Learning, pages 5660-5669. PMLR, 2018.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov,
and Alexander J Smola. Deep sets. Advances in neural information processing systems, 30,
2017.

Dinghuai Zhang, Ricky TQ Chen, Cheng-Hao Liu, Aaron Courville, and Yoshua Bengio.
Diffusion generative flow samplers: Improving learning signals through partial trajectory
optimization. In International Conference on Learning Representations, 2024.

Miao Zhang, Steven W Su, Shirui Pan, Xiaojun Chang, Ehsan M Abbasnejad, and Reza
Haffari. iDARTS: Differentiable architecture search with stochastic implicit gradients. In
International Conference on Machine Learning, pages 12557-12566. PMLR, 2021.

130 References

Mingtian Zhang, Thomas Bird, Raza Habib, Tianlin Xu, and David Barber. Variational
f-divergence minimization. arXiv preprint arXiv:1907.11891, 2019.

Mingtian Zhang, Peter Hayes, Thomas Bird, Raza Habib, and David Barber. Spread divergence.
In International Conference on Machine Learning, pages 11106-11116. PMLR, 2020.

Mingtian Zhang, Alex Hawkins-Hooker, Brooks Paige, and David Barber. Moment matching
denoising Gibbs sampling. Advances in Neural Information Processing Systems, 36:23590—
23606, 2023a.

Mingtian Zhang, Jiajun He, Wenlin Chen, Zijing Ou, José Miguel Hernandez-Lobato, Bern-
hard Scholkopf, and David Barber. Towards training one-step diffusion models without
distillation. In ICLR 2025 Workshop on Deep Generative Model in Machine Learning:
Theory, Principle and Efficacy, 2025.

Qinsheng Zhang and Yongxin Chen. Path integral sampler: A stochastic control approach for
sampling. In International Conference on Learning Representations, 2022.

Xuan Zhang, Limei Wang, Jacob Helwig, Youzhi Luo, Cong Fu, Yaochen Xie, Meng Liu,
Yuchao Lin, Zhao Xu, Keqiang Yan, et al. Artificial intelligence for science in quantum,
atomistic, and continuum systems. arXiv preprint arXiv:2307.08423, 2023b.

Appendix A

Supplementary Material for Chapter 2

A.1 Derivation of Denoising Score Identity

Proposition 2.3.1 (Denoising Score Identity). For any convolution kernel k;(x;|x), we have

Vi, logpas(x:) = /th log k¢ (x| z)pa(z|x;) d, (A.1)

where pg(x|x;) o< ki(zi|x)pa(x) is the denoising posterior distribution. For ki(z|x) =

N (z¢|asx, 021) as defined in Equation (2.87), this recovers Tweedie’s formula.

Proof. 1t follows that

Va, T
V., log pay(ar) = LuPae) (A2)
pd,t(fft)
pd,t(xt)
_ [Vi, ki(zi|x)pa(x) da (Ad)
pd,t(xt)
_ | Vi, log ky(xi|2) ki (2|) pa(x) dz (A.5)
pd,t<56't)
- /th log ky(x¢|x) il |2)pa(w) d dx (A.6)
. pd7t(37t)
— [V. log ki(wufe)palelz) da. (A7)
For k;(z,|r) = N (z¢|oyz, 021), we have
Vo, log ki |z) = 5, (A8)

0y

132 Supplementary Material for Chapter 2

which recovers the Tweedie’s formula:

Vi logpai(ee) = [Va,log ku(wilz)pa(al,) do (A9)
1
=22 <at/xpd($!xt) dz — xt) : (A.10)

This completes the proof. Note that the same argument can be used to derive DSI and Tweedie’s

formula for the noisy model score V., log pg .(z:). O

A.2 Derivation of Denoising Score Matching

Without loss of generality, we consider a single time step ¢ and set the weighting function to
A(t) = 1. We start from the score matching (SM) loss (Hyvirinen, 2005), expand its L2 norm,
ignore the constants that are independent of , and apply the DSI from Proposition 2.3.1:

Lsu(0) = Ep, o) [|50(24,) = Vi, log pas(a)]|’] (A.11)
= [llsotn.t) = Vo dog pag(w) Ppactn) e (A12)
= [lisolar.)l pac(a) da

-2 / so(xy, 1) Vg, log pa.+(xt)pat(x:) dzy + const. (A.13)

= [lso(an,)lI?pas(ar) de

-2 // so(wy,t) " Vo, log k(x| 2)pa(z| 2)pay () dz do, + const. (A.14)
= /[oo, *ku(afo)pae) de da

-2 // so(xy, 1)V, log ky(2|2) ki (2] 2)pa(x) dz dar, + const. (A.15)

— [(s, 01 + 192 og o) |2 = 2500, £) V., log i)

ki(x¢|x)pa(x) do dxy 4+ const. (A.16)
= [[lso(wi,t) = V., Yog k) |he(il)pa(w) da d + const. (A17)
= Ep, @)k (el || S0(2¢, 1) — Vg, log ki (z¢|2)||?] + const. (A.18)
= Lpsm(f) + const. (A.19)

This shows the equivalence between score matching and denoising score matching.

Appendix B

Supplementary Material for Chapter 3

B.1 Cauchy’s Implicit Function Theorem

We state Cauchy’s Implicit Function Theorem (IFT) in the context of ADKF-IFT.
Theorem B.1.1 (Implicit Function Theorem). Let 7' be any given task Suppose for some

0 L (YmetasYadapt:S71) .
and wadapt that = a;badapcj - o = 0. Suppose f]’ldl’ 81/, dap (77Z)meta7 77Z}adapt7 ST’)
meta> ¥ adapt

Voneta X Wadapr — Wadape i a continuously differentiable function with respect to Ve, and

32 £T (wmela ,wadapt 757'/)
3%{1@:371);/“,,,

meta

Yadaprr and the Hessian is invertible. Then, there exists an open

Ueta Y
set U € VW, containing i, .. and a functiondlpbt;‘dap,(wmem,ST/) C Woera = Vadapr, sUCh
that ¢adapt = 1/}adapt(¢meta787—/) and 35T(¢*giz;it’1@“$ﬂ) Wl (WlrarS 1) =0, vﬂ)mem
Moreover, the partial derivative of V4, (Vmeia; S7) with respzlgtt 10 Ymera for any Y. € U is
given by
aw;kdapt(d)memy St ’)
O g,
- <a2 L (Yneras Yadapt; ST)) = 0 Lo (Ymetar Vadapr, ST7)
Y adapt O agapr OV adapr OV meta)

* /1
meta> (lda,)[(methT’)

(B.1)

B.2 Configurations of ADKF-IFT

For all experiments, we use the specific instantiation of ADKF-IFT from Section 3.3.4.

We solve the inner optimisation problem (3.2) using the L-BFGS optimiser (Liu and Nocedal,
1989), since L-BFGS is the default choice for optimising base kernel parameters in the GP

134 Supplementary Material for Chapter 3

literature. For the outer optimisation problem (3.1), we approximate the expected hypergradient
over p(T) by averaging the hypergradients over a batch of K randomly sampled training tasks
at each step, and update the meta-learned parameters v, With the averaged hypergradient
using the Adam optimiser (Kingma and Ba, 2014) with a learning rate of 10~ for MoleculeNet
and 10~ for FS-Mol. We set K = 10 for MoleculeNet and K = 16 for FS-Mol. For all
experiments on FS-Mol, we evaluate the performance of our model on a small set of validation
tasks during meta-training and use early stopping (Prechelt, 1998) to avoid overfitting of the

meta-learned parameters Ve, -

We use zero mean function and set Matérn-5/2 without automatic relevance determination
(ARD) (Neal, 1996) as the base kernel in ADKF-IFT, since the typical sizes of the support
sets in few-shot learning are too small to adjust a relatively large number of ARD lengthscales
in ADKF-IFT. The lengthscale in the base kernel of ADKF-IFT is initialised using the median
heuristic (Garreau et al., 2017) for each task, with a log-normal prior centred at the initialisation.
Following Patacchiola et al. (2020), we treat binary classification as +1 label regression for
ADKEF-IFT.

B.3 Configurations of All Baselines on FS-Mol

Single-Task Methods

Single-task methods (RF, kNN, GP-ST, GNN-ST, and DKL) are trained separately on the
support set of each test task, without leveraging the knowledge contained in the training
tasks. The implementations of RF, kNN, and GNN-ST are taken from Stanley et al. (2021).
RF, kNN, and GP-ST operates on top of manually curated features obtained using RDKit.
RF and kNN use extended connectivity fingerprint (Rogers and Hahn, 2010) (count-based
fingerprint with radius 2 and size 2,048) and phys-chem descriptors (with size 42). GP-ST
uses fingerprint (with radius 2 and 2,048 bits based on count simulation). DKL operates on top
of a combination of extended connectivity fingerprint (Rogers and Hahn, 2010) (count-based
fingerprint with radius 2 and size 2,048) and features extracted by a GNN. The base kernel
used in DKL is the same as that used in ADKF-IFT. DKL is trained for 50 epochs on the
support set of each test task. Hyperparameter search configurations for these methods are
based on the extensive industrial experience from the authors of Stanley et al. (2021). GNN-ST
uses a GNN with a hidden dimension of 128 and a gated readout function (Gilmer et al., 2017),

considering ~ 30 hyperparameter search configurations.

B.4 Further Comparisons Between DKT and ADKF-IFT 135

Multi-Task Pretraining

The implementation of GNN-MT is taken from Stanley et al. (2021). GNN-MT shares a GNN
with a hidden dimension of 128 using principal neighbourhood message aggregation (Corso
et al., 2020) across tasks, and uses a task-specific gated readout function Gilmer et al. (2017)
and an MLP with one hidden layer on top for each individual task. The model is trained on the
support sets of all training tasks with early stopping based on the performance on the validation

tasks. The task-specific components of the model are fine-tuned for each test task.

Self-Supervised Pretraining

The implementation of MAT is taken from Stanley et al. (2021). We use the official pretrained
model parameters (Maziarka et al., 2020), which is pretrained on 2 million molecules sampled
from the ZINC15 dataset (Sterling and Irwin, 2015). We fine-tuned it for each test task with
hyperparameter search and early stopping based on 20% of the support set for each task.

Meta-Learning Methods

Meta-learning methods (PAR, ProtoNet, GNN-MAML, CNP, DKT, and ADKF-IFT) enable
knowledge transfer among related small datasets. The implementations of ProtoNet and
GNN-MAML are taken from Stanley et al. (2021). The implementation of PAR is taken from
its official implementation and integrated into the FS-Mol training and evaluation pipeline.
PAR, ProtoNet, CNP, DKT, and ADKF-IFT operate on top of a combination of extended
connectivity fingerprint (Rogers and Hahn, 2010) (count-based fingerprint with radius 2 and
size 2,048) and features extracted by a GNN. The GNN feature extractor architecture used for
DKL, PAR, CNP, DKT, and ADKF-IFT is the same as that used for ProtoNet, GNN-MAML,
GNN-ST, and GNN-MT in Stanley et al. (2021), with the size of the feature representation
being tuned on the validation tasks. The base kernel used in DKT is the same as that used in
ADKEF-IFT.

B.4 Further Comparisons Between DKT and ADKF-IFT

Figure B.1 and Figure B.2 visualise the distributions of the optimal ADKF-IFT base kernel
parameters ¢ against the optimal DKT base kernel parameters on all FS-Mol test tasks.
First, it can be seen that the optimal base kernel parameters vary across tasks in ADKF-IFT,
demonstrating the importance of adapting these hyperparameters to each task. Moreover,
ADKEF-IFT generally has larger signal amplitude and smaller likelihood noise than DKT,
achieving a significantly better signal-to-noise ratio than DKT in all settings. This confirms
that ADKF-IFT provides a more informative prediction than DKT.

136 Supplementary Material for Chapter 3

likelihood noise signal amplitude lengthscale

6
-
1)
S
S

150

®
o
o

100 A
400 A

50 A
200

support set size = 1
(=)}
8

0.10 0.15 0.20 0.25 0.30 0.35 15 2.0

1200 A
1000 A
800 -
600 A

400 A
200 A I
0-

800 -

support set size = 32

25

015 020 025 030 0.35

0.5 1.0 15 2.0

600 -

400 -

200 -

support set size = 64

0.10 0.15 0.20 0.25 0.30 0.35 2.0

700 1 300 1 175 4

600 250 - 150

500 125 A

200 A

400 - 100 A

T
1
|
I
I
(]
(!
{l
Il
1
f 150 A
300 A] 754
1 100 -
{l

200 A 50

100 A 501

support set size = 128

251

0.10 0.15 0.20 0.25 0.30 0.35 2.0

T
150 - :
1

1

1254 1
1

1

100 4 :
i

75 1 1

50

25 A

support set size = 256

0 i, " " E E
0.10 0.15 0.20 0.25 0.30 0.35 0.8 1.0 1.2 1.4 1.6 1.8 2.0 0.5 1.0 1.5 2.0
noise amplitude lengthscale

Figure B.1 Visualisation of the distributions of the optimal ADKF-IFT base kernel parameters
6 against the optimal DKT base kernel parameters on all FS-Mol test classification tasks. In
each plot, the blue histogram represents the empirical distribution of a ADKF-IFT base kernel
parameter (x-axis: hyperparameter value, y-axis: frequency), and the black dotted line denotes
the value of that base kernel parameter in DKT.

B.4 Further Comparisons Between DKT and ADKF-IFT 137

200 likelihood noise signal amplitude lengthscale
1
1
— 1000
[
% 800 A
@
% 600 1
wn
£
S 400 A
Q.
o
a 200 A
0 T T T
0.05 0.10 0.15 0.20
1
[
& 1000
[
@ 800 -
N
@
*G-’J 600 A
wn
£ |
5 400
[oR
o
> 2004
wn
0 T T T
0.05 0.10 0.15 0.20
1
< 1000 A
©
I 800 -
(]
N
%]
2 6001
(]
wn
£ 4004
o
[oR
S 2001
wn
ole : :
0.05 0.10 0.15 0.20
1
[ee]
o~
—~ 800
Il
Q
N 600
wn
o
Q
v 400
1
8
a 200
>
wn
0 y T T
0.05 0.10 0.15 0.20
300 ;
prd
~ 250
Il
o 200
N
"
4+ 150
[
wn
£ 100
o
g
S 50
wn
O_L-

0.05 0.10 0.15 0.20 1.0 15 2.0 2.5 0.5 1.0 15 2.0 2.5 3.0 3.5
noise amplitude lengthscale

Figure B.2 Visualisation of the distributions of the optimal ADKF-IFT base kernel parameters
6 against the optimal DKT base kernel parameters on all FS-Mol test regression tasks. In
each plot, the blue histogram represents the empirical distribution of a ADKF-IFT base kernel
parameter (x-axis: hyperparameter value, y-axis: frequency), and the black dotted line denotes
the value of that base kernel parameter in DKT.

138 Supplementary Material for Chapter 3

- “
i II
©
C
o
§ 400
£
£ 300
3
S 200
T

O,
WP wet o0& A6 N\
c ?(0‘0 O P\O\Q? G*’N\P\

Figure B.3 Wall-clock time consumed (with standard errors) when meta-testing on a pre-
defined set of FS-Mol classification tasks using each of the compared meta-learning methods.

B.5 Meta-Testing Cost on FS-Mol

Figure B.3 shows the meta-testing costs of all compared meta-learning methods in terms of
wall-clock time' on a pre-defined set of FS-Mol classification tasks. These experiments were
run on a single NVIDIA GeForce RTX 2080 Ti GPU. It can be seen that ADKF-IFT is ~ 2.5x
slower than CNP, ProtoNet, and DKT, but still much faster than GNN-MAML. We did not
report the wall-clock time for PAR as it is extremely memory intensive (PAR takes > 10x
memory than ADKF-IFT does) and thus cannot be run on a single GPU.

B.6 Reproducibility Statement

Our open-source implementation of ADKF-IFT for reproducing the experimental results in
Chapter 3 can be found at https://github.com/Wenlin-Chen/ADKF-IFT, which is based on a
fork from the FS-Mol repository (https://github.com/microsoft/FS-Mol) (Stanley et al., 2021)
and PAR repository (https://github.com/tatal 66 1/PAR-Neur[PS21) (Wang et al., 2021).

'We acknowledge that wall-clock time may not be the best metric for measuring the costs, since some
meta-learning methods could be parallelised, which will reduce the wall-clock time accordingly. An alternative
metric would be multiply—accumulate operation (MAC). However, it is difficult to obtain the accurate number of
MAC:s due to the opaqueness of the GP modules used.

https://github.com/Wenlin-Chen/ADKF-IFT
https://github.com/microsoft/FS-Mol
https://github.com/tata1661/PAR-NeurIPS21

Appendix C

Supplementary Material for Chapter 4

C.1 Proof of Theorem 4.3.2

Theorem 4.3.2. Let 0 := (¢, {w, }27,) and 0" == (¢', {w’.}27,) be any two sets of multi-task
regression model parameters such that

pa(y’l’ﬂ') :pel(y‘l'aT)) VTaxay' (Cl)

Assume that Span(Im(hy)) = R%, i.e., the vectors in the image of the feature extractor hy
span the whole R%. Suppose that there exist d., tasks {7;}}=, C {1, , N,} such that the set
of the regression weights {w., }; d- Z, are linearly independent. Then the data representations of

the MTRN are linearly identifiable.

Proof. By the assumption that the predictive likelihoods for the two sets of parameters ¢’ and
6 are equal, we have

po(yle, 7) = po(yla, 7), V72,9, (C2)

— NWligw, (2),07.) = NWlhpw, (), 07,), V7,29, (C.3)

= Nylhy(x) vy, 07) = N(ylhe(x) 'wr,07,), V72,9, (C4)

= hy(z) Wl = hy(z) w,, V7,3,9. (C.5)

By the assumption that Span(Im(h)) = R%, there must exist d,, input data points 1, - - - , x4,
such that the matrix H = [h¢(x1) <o hy(zg,)] € R%*% is invertible. By the assumption

that there exist d, tasks {7;}%, such that the set of regression weights {w,, }%, are linearly

independent, we construct an invertible matrix W = [w,,, -+ ,w; dz] € R4 For hg, we

140 Supplementary Material for Chapter 4

similarly define H' := [hy (z1), -, hy(z4.)] € R=*=and W' == [w! |-+ ,w. | € Rd=*d=,

T1? ? Td,

Note that H' and W' are not necessarily invertible.

Now, we evaluate Equation (C.5) at the d., input data points z1, - - - , 4, and d, tasks 79, - - - , 74

z

defined above, which gives us the following linear equation:
(HY'W' = H"W. (C.6)

Since both H and W are invertible by assumption and the weight matrices ¥ and ¥’ do not
depend on the input data x, the matrix ¥/ must be invertible.

Now, evaluating Equation (C.5) at the d, tasks 7y, - - - , 74., we have
(W) Thy(x) = WThy(x), Vz (C.7)
= hy(z) = (W) "W hy(z), Vo (C.8)

Note that we have shown that A := (W)~ "W is invertible. This completes the proof. [

C.2 Proof of Theorem 4.3.5

Theorem 4.3.5. Let u := [y, 7] denote the conditioning variable and k = 2d,. Assume that
the learned and ground-truth linear transformations A and A, are invertible. Suppose that

there exist k + 1 points ug, uy, - - - , uy such that the matrix

L= [n(u1) = n(uo), -~ n(ur) — nluo)] (C.10)

is invertible, where
1
A a,

. € RF (C.11)
—jdiag(A;")

n(u) =

are the natural parameters of p;(z|u). Assume that Equation (4.16) has a unique solution
and that the optimisation procedure for Equation (4.16) converges to the optimal marginal
likelihood

pi(hly, 7) = N(h|puz, X7) (C.12)

under standard regularity conditions for maximum marginal likelihood estimators (Gurland,
1954), i.e.,

py (hly, 7) = pu(hly,7), Vh,y,T, (C.13)

C.2 Proof of Theorem 4.3.5 141

where 1> and X are defined in Equation (4.15) but with the ground-truth linear transformation
A,, ground-truth causal indicators c: and ground-truth spurious coefficients . Then, the

latent factors recovered by MTLCM are guaranteed to be point-wise identifiable.

Proof. We first rewrite the density of the conditional prior in the exponential family form:

pe(zlu) = Z(u) ™ exp (T(2) Tn(u)) (C.14)

where the normalising constant is given by
a 1
Z(u) = (277)%| det(AT)|% exp (2aIAT_1aT> , (C.15)

the sufficient statistics are defined as

T(z)=| = | eRk, (C.16)
AON
and the natural parameters are defined as
A la,
n(u) = T | eRM (C.17)
- %dlag(AT 1)

We also rewrite the likelihood p4(h|z) using the noise distribution p.,(&,) == N (&,|0, 02I):
pa(h|z) = N(h|Az,02T) = N'(h — Az|0,021) = p.,(h — Az). (C.18)

Let A, be the ground-truth transformation matrix such that z* = A_'h. Denote the ground-
truth task-specific variables associated with each task 7 by ¢, (7) = {c%,~v}. The proof
starts off by using the fact that we have maximised the marginal likelihood as shown in
Equation (4.14) with respect to A and ¢ for all tasks. This means that the marginal likelihoods
of the two models are identical:

pay(hlu) = pa, . (hlu), Vh,u. (C.19)

The goal is to show that the latent factors = = A~1h recovered by our model and the ground-
truth latent factor z* = A_'h are identical up to permutations and scaling for all h. Starting

142 Supplementary Material for Chapter 4

from the equality of the two marginal likelihoods as shown in Equation (C.19), we have

pap(hlu) =pa, u, (hlu) (C.20)
— / pa(hl2)pe(elu) dz = / pa. (hl2)pe. (=|u) d= (C21)
— [AspcCel) s = [e (b= A2y (sl az (€22)

— / pe, (h — h)pe(A~ hju)| det(A)| " dh = / pe, (h — h)pe. (AT hju)| det(A.)] 1 dh (C.23)

— [e h = Wyl = [ey h = D () 24
= (pe, *Py,u)(h) = (Pe, * Py.u)(h) (C25)

= Flpe,) FPy,u]l = Flpe, | F D, ul (C.26)

= Flby,ul = Flby. ul (C.27)

= Pyul(h) = Py. u() (C.28)

= pc(A™ hlu)|det(A)| ™1 = pe, (AL hlu)| det(AL)| (C.29)

— T(A7'h) "n(u) —log Z(u) — log | det(A)| = T(A;'h) Tn.(u) — log Z.(u) — log | det(A.)|, (C.30)

where
« Equation (C.23) follows by the definitions / := Az and h = A,z
* Equation (C.24) follows by the definition pa (k) = py (A" hlu)|det(A)|~*
* x in Equation (C.25) denotes the convolution operator,

* F in Equation (C.26) denotes the Fourier transform operator,

Equation (C.27) follows since the characteristic function F[p., | of the Gaussian noise

€, 1s non-zero almost everywhere.

Now we evaluate Equation (C.30) at u = wuq, uy, - - - , ux from our assumption to obtain k + 1
such equations and subtract the first equation from the remaining £ equations to obtain the
following k equations:

T) =) + o Z8 = AR () =) + o 72
(C.31)
where [= 1,--- | k. Putting those k equations in the matrix-vector form gives
L'T(A7'h) = LIT(A7'h) + b, (C.32)
where b, == log %, L is the invertible matrix defined in the assumption, and L, is

similarly defined for the second model but is not necessarily invertible. Since L is invertible,

C.2 Proof of Theorem 4.3.5 143

we can left multiply Equation (C.32) by L~ to obtain
T(A'h) = MT(A;'h) +r, (C.33)

where M = L~ "L and r := L~ "b. We note that our assumption only says L is invertible
and tells us nothing about L. Therefore, we need to show that M is invertible. Let h; := Az
for[= 0---, k. We evaluate Equation (C.33) at these k + 1 points to obtain k£ + 1 such

equations, and subtract the first equation from the remaining k equations. This gives us

[T(z1) =T (z0), -+ T(2)~T(20)] = MIT(AT hy)=T(A o), - T(A) =T(A o)
(C.34)
We denote Equation (C.34) by R := M R,. We need to show that for any given 2y, there
exist k points 21, - - - , 2 such that the columns of R are linearly independent. Suppose, for
contradiction, that the columns of /2 would never be linearly independent for any z, - - - , 2.
Then the function ¢(z) := T'(2) — T'(zo) would live in a k — 1 or lower dimensional subspace,
and therefore we would be able to find a non-zero vector A € R* orthogonal to that subspace.
This would imply that (7'(z) — T'(2)) "X = 0 and thus T'(2) "\ = T'(zy) ' A = const. for all z,
which contradicts the fact that our conditionally factorised multivariate Gaussian prior p¢(z|u)
is strongly exponential (Khemakhem et al., 2020a). This shows that there must exist £ points
21, -+, 2 such that the columns of R are linearly independent for any given z,. Therefore,
R is invertible. Since R = M R, and M is not a function of z, this tells us that A/ must be

invertible.

Now that we have shown that M is invertible, the next step is to show that M is a block
transformation matrix. We define a linear function [(z) := A;'Az. Now, Equation (C.33)

becomes
T(z)=MT((z2)) +r. (C.35)

We first show that the linear function [is a point-wise function. We differentiate both sides of

the above equation with respect to z, and z; (Vs # t) to obtain:

oT(2) v =0T (1(2)) Ols(2)

8z5 - ; li(2) 8z5 ’ (€.36)
0*T & 92T (1(2) Ol(2) Oli(= 9T (1(2)) 0212)
+ M .
8z582t ;; al;(81) 0z (’323 Z l;(2) (9 02 (€37

Since the prior p¢(z|u) is conditionally factorised, the second-order cross derivatives of the

sufficient statistics are zeros. Therefore, the second equation above can be simplified as

144 Supplementary Material for Chapter 4

follows:
0T (z)
0= 92.0% (C.38)
B ds PT(1(2)) 0l;(2) Ol;(2) dx OT(1(2)) 8%;(2)
MZ 0l (2)2 Oz 0z MZ 0li(z) 0zs0z (€.39)
= MT”(z)l;Z(z) + MT’(z)l;’,Z(z) (C.40)
= MT"(2)I] (), (C.41)
where
1" o _@2 (()) aQT(l(z)) kxd,
T (Z) = 8[1() 5 ,W eR y (C42)
p o [0 0h(z) Ola(2) e (2)]
ls,z(’Z) T 3zt 825)) 8Zt 825] c R) (C43)
o (l(Z)) - oT1(l(2)) kxds
T(Z> T (Z) ’) aldz(z) ‘| €]R 9 (C44)
sy [P0 Pl g
ls,z(z> = _8258zt o ' 0r.0m e R%, (C.45)
T"(2) = [T"(2),T'(2)] € R**, (C.46)
10(2) =[5 .(2) " 10.(2) "] e RM. (C.47)

By Lemma 5 in Khemakhem et al. (2020a) and the fact that k£ = 2d,, we have that the rank of
T"(z) is 2d, and thus it is invertible for all z. Since M is also invertible, we have that MT"(z)
is invertible. Since MT"(2)l{.(z) = 0, it must be that [{’,(2) = 0, Vz. In particular, this
means that I/ (z) = 0, Vs # t for all z, which shows that the linear function /(z) = A" Az

is a point-wise linear function.

Now, we are ready to show that M is a block transformation matrix. Without loss of generality,

we assume that the permutation in the point-wise linear function [is the identity. That is,

I(z) = [l121, - ,l4.24.]" for some linear univariate scalars /1, - - - ,l4. € R. Since A and A,
are invertible, we have that [' (z) = [I; 21, -+ ,1;'24.]". Define
T((2) =T((z)) + M 'r (C.48)

and plug it into Equation (C.35) gives:

T(z) = MT(I(z)). (C.49)

C.2 Proof of Theorem 4.3.5 145

We then apply [~! to z at both sides of the Equation (C.49) to obtain

T '(2)) = MT(z). (C.50)
Since [is a point-wise function, for a given ¢ € {1,--- , k}, we have that for any s such that
q # sand q # 2s
oT(171(2)), k oT(z);
0O=——F7"7-—""—==> M, = C.51
0z, Z D9z, ()

Since the entries in 7'(z) are linearly independent, it must be that M, ; = 0 for any j such that
% # 0. This includes the entries j in 7(z) which depend on z, (i.e., j = s and j = 2s).
Note that this holds true for any s such that ¢ # s and g # 2s. Therefore, when ¢ is the index
of an entry in the sufficient statistics 7" that corresponds to z; (i.e., ¢ = i or ¢ = 27, and i # s),
the only possible non-zero M, ; for j are the ones that map between T;(2;) and T;(1;(2;)),
where T; are the factors in 7" that depend on z; and T, are similarly defined. This shows that
M is a block transformation matrix for each block [z;, 2?] with scaling factor /;. That is, the
only possible non-zero element in M are M, ;, M; 2;, Ma; ;, and My, o; foralli € {1,--- ,d,}.

Furthermore, for any i € {1,--- ,d,} we have that

T (=) & OT(2),

= e T = Y My = = My + 2Mi i, (C.52)
i j=1 7
T (2))y & OT(2);
20712 = (az(z))z =3 Mzi,jai% = Myi; + 2Ma; 2:2;. (C.53)
) j=1)

This implies that M; 5 = 0 and My;; = 0 forany i € {1,--- ,d.}, and M;; = [; ' fori €
{1, -, k}, which reduces M from a block transformation matrix to a point-wise permutation
and scaling matrix. In particular, this means that the latent factors z; are identifiable up to
point-wise permutations and scaling, with the transformation matrix P € R%*% defined by
the first d, rows and d, columns of M:

A'h=PA'h+r << h=AP(A;'h)+ Ar. (C.54)

Since h is linearly identifiable by assumption, it must be that Ar = 0 by Definition 4.3.1.
Since A is invertible by assumption, it must be that » = 0. Therefore, we have

A7'h = PAT'h. (C.55)

This completes the proof. []

146 Supplementary Material for Chapter 4

C.3 Derivation of the Conditionally Factorised Prior

Since no prior knowledge is assumed for the task-specific regression weights w, € R%, we

put an improper uniform prior over w, for all tasks 7:
Pwl(wy) o< 1, (C.56)
which can be thought of as a Gaussian prior with infinite variance:
Puw(wy) = lim ge(w,) = lim N (w,|0,r°I). (C.57)

Note that improper distributions do not need to integrate to one but may be used as priors
(e.g., non-informative priors) in Bayesian inference to produce valid posterior distributions in
certain cases (Bishop, 2006; Murphy, 2012).

We marginalise out the weights w. from the likelihood p¢ (y|zc, wr, 7) = N (y|(w-Oc¢;) 2, 02)

over the improper uniform prior p,,(w,), which makes the marginal distribution p¢(y|2., 7) an

improper uniform distribution over the target variable y:

peylze) = [pelylzeswn, Ppulur) duy (C€58)
— [pelylzeswe,7) Jim ac(uer) du, (C.59)
= Jim [pe(ylze wr, T)as(wr) du, (C.60)
= lim N(y|0,#*(c; © 2) " (¢e; © 2) +0p) (C.61)
ox 1. (C.62)

Since improper distributions do not need to integrate to one, we define the density of the above

marginal distribution to be a constant C' everywhere: p;(y|z., 7) = C. Then, this results in a

valid posterior distribution according to the Bayes’ rule:

pC(zc|T)pC(y|ZC7T)pC(Zs’va>

e C.63

Pl T) = e P (lzes Tpe (olys 7) 2 e (C.63)
pC(Zc|7—)pC(Zs‘y7 T)

= I ezl (2 ly, 7) dzs dze
= pc(2e|T)pe(2s|y, 7). (C.65)

(C.64)

Since p¢(z.|T) factorizes over the causal latent factors and p¢(z;|y, 7) factorizes over the
spurious latent factors, we conclude that the structured conditional prior p,(z|y, 7) factorises
over all latent factors z.

C.4 Derivation of the Marginal Likelihood for MTLCM 147

Furthermore, we verify that the compact expressions for the mean a, and variance A, of
pc(zly, 7) in Equation (4.12) are correct. Recall that Equation (4.7) tells us that

pe(e|T) = N ([0,), (C.66)
and Equation (4.9) tells us that
pe(zsly, 7) = N(zlye, o01). (C.67)
Recall that the compact expressions given by Equation (4.12) are

ar =yyro(l—cr),

(C.68)
A, = diag(o?(1 —¢;) + ¢,).

For any causal latent variable z;, we have c;; = 1 and therefore a,; = 0 and A, ; = 1. For any
spurious latent variable z;, we have ¢, ; = 0 and therefore a, ; = y7,; and A, ; = o2. This
verifies that Equation (4.12) is correct.

C.4 Derivation of the Marginal Likelihood for MTLCM

The marginal likelihood for MTRN given by Equation (4.14) is

pu(hly,7) = [pahl)pc(zly,7) d
= N(hlpr, 7)),

(C.69)
where p4(h|z) = N(h|Az,021) and pc(z|y,) = N(z|a,, A,). Equivalently, we can rewrite
the likelihood in the following form:

h=Az+c¢, (C.70)

where p.(¢) = N(g|0,021). Since both p4(h|z) and p:(z|y,) are linear Gaussians, we
can derive closed-form expression for the mean j., and covariance > using moment match-

ing:

My =]Epg(z|y,7') [h] (C.71)
= ABp (zlyn) 2] (C.72)
= Aa, (C.73)

148 Supplementary Material for Chapter 4

and
ET = Varpg(z‘yﬁ) [h] (C.75)
= AVaI‘pC(Zw,T) [Z]AT + Varps(g) [E] (C76)
= ANAT + 07T (C.77)
= Adiag(o?(1 —¢;) +¢,)A" + 021 (C.78)

This verifies that Equation (4.14) is correct.

C.5 Model Configurations

In Stage 1, the learnable parameters of a multi-task regression network (MTRN) are the feature
extractor parameters ¢ and the task-specific regression weights w, for all tasks 7. These model

parameters are learned by maximum likelihood as defined in Equation (4.4).

In Stage 2, the learnable parameters of a multi-task linear causal model (MTLCM) are the
linear transformation A, the causal indicators ¢, for all tasks 7, and the spurious coefficients
v, for all tasks 7. These are free parameters learned by maximum marginal likelihood as
defined in Equation (4.16). The binary causal indicators ¢, are parameterised as continuous
parameters in R squashed to [0, 1] by the sigmoid function. To allow for gradient update of
¢, we do not binarise the output of the sigmoid function during training; instead, we use a
soft version ¢, € [0,1]% during training. In practice, we find that this works well and all
learned values for ¢, ; are very close to either O or 1. In the synthetic data setting, we found
that the learned causal indicators matched the ground-truth values. In practice, we fix the
spurious noise variance o, and the observational noise variance o to some constants using

cross validation.

For a fair comparison, we also consider the multi-task extensions of iVAE and iCaRL, MT-
1VAE and MT-iCaRL, which include the task variable 7 in the conditioning variables w in their
conditional priors p¢(z|u), with the task-specific parameter ¢, = {v;,} is a free parameter to
be learned from data, which is the counterpart to ¢, = {c,,~,} in our MTLCM but has no
explicit interpretations with respect to a causal graph. We set dim(v,) = dim(c,) +dim(~;) to
ensure that the baselines have the same degree of flexibility as our MTLCM. The task-specific
parameters v, are free parameters learned jointly with other parameters in these models by

optimising their variational/score matching objectives.

C.6 Ablation Study for the Linear Synthetic Experiment 149

Matrix type = identity Matrix type = orthogonal Matrix type = random
1.00

0.95

0.90

Q
O 0.85
=
0.80 —— Ground truth scaled
[No ground truth scaled
075 | —— Ground truth not scaled

0.70 —— No ground truth not scaled

0 1000 2000 3000 4000 5000 6000 O 1000 2000 3000 4000 5000 6000 O 1000 2000 3000 4000 5000 6000
Epoch Epoch Epoch

Figure C.1 Convergence of the model in the case of transformations of the latent factors for
identity, orthogonal and arbitrary linear transformations. Scaled means standardising the
features.

C.6 Ablation Study for the Linear Synthetic Experiment

In Figure C.1, we contrast the effect of training only the linear transformation matrix A in
our MTLCM when the ground-truth task variables ¢}, v are known to the model, with the
more general setting of learning all parameters jointly via maximum marginal likelihood. We
assess the convergence of our multi-task linear causal model (MTLCM) across 5 random seeds
for increasingly complex linear transformations (i.e., identity, orthogonal, random) for data
consisting of 10 latent factors with 2 causal features. Rather than inhibiting convergence, we
find that training all parameters jointly leads to improved performance, possibly due to addi-
tional flexibility in the parametrisations of the model. For all types of linear transformations,
our model succeeds in recovering the ground-truth latent factors. In additional, we find that

standardising the features accelerates convergence.

C.7 Reproducibility Statement

Our open-source implementation of MTRN and MTLCM for reproducing the experimental
results in Chapter 4 can be found at https://github.com/jdhorwood/mtlcm.

https://github.com/jdhorwood/mtlcm

Appendix D

Supplementary Material for Chapter 5

D.1 DiIKL Divergence is a Lower Bound of KL Divergence

Below, we show that DiKL divergence is a lower bound of KL divergence for a single kernel

k(x4|x); the extension to multiple kernels is straightforward.

First, we show that the KL divergence between two joint densities p(x,y) = p(y|z)p(x) and
q(z,y) = q(y|r)q(x) can be factorized as follows:

KL(p(z,y)|lq(z,y)) = KL(p(z)p(y|z)|[q(x)q(y|z)) (D.1)
_ p(x)p(y|z)
— [[p@p(ylz) g el (D.2)
p(x) p(ylx)
/ log .(@) dx—i—//p (y|x) log Tl dydz (D.3)
= KL(p(2)|q(z)) + Ep) [KL(p(y|z)[g(y|2))]. (D.4)

Using the above identity, we have

KL(p(2)|lg(x)) = KL(p(2)||q(2)) + Epu) [KL(k(z¢|2)|[k(2¢|2))] (D.5)
= KL(p(2)k(z:|z)||g(x) k(2| 2)) (D.6)
= KL(p(z¢)p(z|z:)||q(z:)q(z]xt)) (D.7)
= KL(p(z)[lq(21)) + Ep(an) [KL(p(z|ze)|lq(z|2:))] (D.8)
> KL(p(z1)|q(z4)) (D.9)
= Di (

= DiKLy, (p(z)]|q(z)), (D.10)

152 Supplementary Material for Chapter 5

where the equality attains when p = ¢, the marginal noisy densities are defined as
pla) = [Kado)p(e) de, (D.11)
aler) = [K(le)a(x) d, (D.12)
and the denoising posterior densities are defined as

k(] x)p(r)

p(z|r,) = O (D.13)
_ k(ar)q(x)
alefe) = == 25 (D.14)

D.2 Derivation of the Analytical Gradient for R-DiKL

Recall that the gradient of R-DiKL with respect to the model parameter 6 is given by

" ox
VoDiKLy, (ps||pa) = / po(z1) (Va, log po(z) — Vi, log pa(ay)) afet dx;. (D.15)

Proof. The R-DiKL at time ¢ is defined as
DiKLy, (pul pa) = | (1og po(1) — 1og pal)) pal:) da. (D.16)
We first reparameterise z; as a function of z and ¢:

rr = afo(2) + ower = he(2, 1), (D.17)

where z ~ p.(z) = N (z|0,1) and &; ~ p.(g;) = N (&0, I). It then follows that

VoDiKLg, (po||pa) (D.18)
=V / (log po(xt) — log pa(w)) pe(xs) da (D.19)
= / / / (log po(e) — log pala)) 8(xs — ha(220))ps (2)p-(e1) day dz de (D.20)
=V [GoBpa(e1) ~ 108 i) Lo e p(GIper) e (D21)

oz oz
= // (Ve log pg(z¢) + Vs, logpe(xt)afat - Vo, logpd(wt)a(;)

p2(2)pe(er) dzde (D.22)

xt=hg(z,¢)

0 0
-/ <Ve log po (1) + Va, log po(a) 5 — Vi, 1ogpd<:ct);;) po(er) day (D.23)

8xt

0
-/ (vmt log po (1) 55— Vi, logpd(xt)ag) po(a) da, (D.24)

D.3 Derivations of Score Identities 153
where the last line follows since

[Votogpo(wpo(w) dr = [Vopo(w) da (D.25)

— v, / polz:) dz, (D.26)

=Vl =0. (D.27)

This completes the proof. O]

D.3 Derivations of Score Identities

D.3.1 Derivation of Target Score Identity

Proposition 5.3.3 (Target Score Identity). For any translation-invariant convolution kernel

k(xy|z) = k(zy — ayx), we have

Vi, log pa(z:) = Ot /Vx log pa(z)pa(z|z:) dz,
where py(z|x;) < k(xy|x)py(z) is the denoising posterior distribution.
Proof. Since k(x¢|z) = k(x; — aux) is translation-invariant, we have

Va, log k(z,]x) = —a 'V, log k(z|z).
But by Bayes rule, we have
Vi log k(zi|z) = Vi log pa(z|z:) — V., log pa().
Using DSI from Proposition 2.3.1, it then follows that

Vi logpu(ee) = [Ve k(afe)pa(ele) do

= —oz_l/ka(xt|m)pd(x|xt) dz

=a ! / (Ve logpa(x) — V. log pa(x|zt)) pa(z|z:) dz

— o' [V. logpu(e)paaln,) da.

(D.28)

(D.29)

(D.30)

(D.31)
(D.32)
(D.33)

(D.34)

154 Supplementary Material for Chapter 5

where the last equality follows since

/Vx log pa(|zt)pa(z|z:) dz = /vxpd(l"xt)dx (D.35)

= V. [paale) do (D36)

=V,1=0. (D.37)

This completes the proof. O]

D.3.2 Derivation of Mixed Score Identity

Proposition 5.3.4 (Mixed Score Identity). Using a Gaussian convolution kernel k(x;|z) =
N (z¢|oyx, 02 1) with a variance-preserving (VP) scheme o = 1 — o?, and a convex combina-

tion of TSI and DSI with coefficients a? and 1 — o2, respectively, we have
V. logpala) = [(e + V. log pa()) — z)palalwe) de. (D.38)

Proof. For a Gaussian convolution kernel k(z;|z) = N (x¢|oyx, o2 1), DSI becomes

Vi logpu(ee) = [Ve, log k(wi|a)pa(ala,) do (D.39)
x — ax|]?
t
ar — T
_ (-) pa(s]z1) da. (D.A1)
t

Since 0 = 1 — o2, it then follows that

V.lo T T — X
Ve, log pa(zy) = / <at2§pd() + (1 — af)t02t> pa(x|xy) dx (D.42)
t t
= /(at(ﬂc + V. logpi(z)) — x)pa(z|xy) da. (D.43)
This completes the proof. []

D.4 Derivations Regarding Invariance and Equivariance

D.4.1 Proof of Proposition 5.5.1

Proposition 5.5.1. Let the neural sampler fy : Z — X be an G-equivariant mapping.
If the distribution p,(Z) over the latent space Z is G-invariant, then the model density
po(X) = [0(X — fo(2))p.(Z2) dZ is also G-invariant.

D.4 Derivations Regarding Invariance and Equivariance 155

Proof. For any transformation g € G = E(d) x S,,, we have

mlgoX) = [8go X = fy(Z))p:(2) 42 (D.44)

— [8(X = folg™ 0 a0 Z) a2 (D.45)

= [6(X = folZ)p(2') a2 (D.46)

= [o(X = fu(Z)p(2) 2" (D.47)

= pe(X), (D.48)

where Z' .= ¢! o Z, and the penultimate line follows since the transformations g € G =
E(d) x S,, preserves the volume. This completes the proof. [l

D.4.2 Monte Carlo Score Estimators are G-Equivariant

Section 5.5.2 mentioned that we need a G-equivariant estimator for MSI:
Vx, logpa(X:) = /(%(X + Vx log pa(X)) — Xe)pa(X|X:) dX, (D.49)

and that this can be achieved by a broad class of Monte Carlo estimators under mild conditions,
including importance sampling and AIS estimators, with different choices of samplers for
pa(X|X¢), such as MALA and HMC. We now provide a detailed discussion below.

Recall that we embed the product group G = E(d) x S, into an orthogonal group in the
nd-dimensional space: E(d) x S, < O(nd) by constraining both X and Z to be in the
subspace of R™*? with zero centre-of-mass. Therefore, both X and X; are zero-centred, i.e.,
XT1 = X,"1 =0. Additionally, we can show that the score Vx log ps(X) = —Vx E(X) is
also zero-centred.

Proposition D.4.1. Let X € R"*? be a random variable representing a d-dimensional n-body
system. Let E : R™% — R be a translation invariant energy function. Then, the gradient of E

is translation invariant and zero-centred.

Proof. Lett € R? be a translation. Given the fact that E is translation invariant:
E(X)=E(X+1t"), (D.50)

taking gradient with respect to X on both sides, we have

VxE(X)=VxE(X +1t"). (D.51)

156 Supplementary Material for Chapter 5

Let X’ = X + 1t". By chain rule, we have
VxE(X)=VxE(X)=VxEX)Vx(X+1t") = VxE(X'), (D.52)

which shows that the gradient of a translation invariant energy function is also translation

invariant.

Now, we show that the gradient of E is always zero-centred. Applying the first-order Taylor
expansion at X = X to both sides of E(X) = F(X + 1t"), we have

E(Xo) + trace (VE(Xo)(X — Xo)") (D.53)
= E(Xo+1t") + trace (VE(Xo + 1t")(X — Xo — 1¢7)T) (D.54)
= E(X,) + trace (VE(Xo)(X — Xo — 1¢7)7). (D.55)

It then follows that
0 = trace (VE(Xo)t1") = 1TVE(X)"t. (D.56)
Note that this holds for any translation ¢ and any point X,. Hence, we must have
VE(X)'1=0, VX. (D.57)
This completes the proof. []

Therefore, the entire MSI as shown in Equation (D.49) is zero-centred and G-equivariant with
respect to X;. Below, we show that various Monte Carlo estimators for MSI used in Chapter 5

meet these requirements.

For simplicity of notation, we will omit the subscript of the gradient operator V unless
there is disambiguity. We will use A/ (XY, v) to denote isotropic Gaussian distributions for
matrices:

N (XY, v) = N (vec(X)|vec(Y),vI). (D.58)

We will use V to denote Gaussian distributions in the zero-centred subspace:
N(X]), ifXT1=0,

N(X|) (D.59)
0, otherwise.

D.4 Derivations Regarding Invariance and Equivariance 157

Importance Sampling

We begin with the simplest case, where we estimate Equation (D.49) using importance
sampling (IS) with a zero-centred Gaussian proposal as in Akhound-Sadegh et al. (2024):

¢(X|X,) = N(X|X; /oy, 02 /a?). (D.60)

Formally, the IS estimator works as follows:

(@l + Viogpa(X)) = X)pa(X|X) dX (D.61)
_ o X 4 VIogpu(X)pu(X)IN (Xifeu X, 0P) dX D6
J pa(X)N (X; |04tX Ut)dX
J(X -+ Vlog pa(X))pa(XN (X | X, /a1, 07 f0?) AX
= — X D.63
i [pa XN (X|X,fan, 03 jad) X co PO
~ Y (XO + Viog pa(XY))pa(X D) _ X, (D.64)

Zz' 1pd(X(l))

where X D) ~ ¢(X|X;) = N(X|X;/a;, 02 /a?), pa(X) denotes the unnormalised density
of the target distribution py(X), and the penultimate line follows since

(X |X,) x N(X|ou X, 0?) (D.65)

and the normalising constant Z from the numerator and denominator are cancelled out. In

other words, we draw samples from the proposal ¢(X | X;) to target at
pa(X|X,) < pa(XN (Xy|au X, 02). (D.66)

Hence, the importance weight is given by

pd(X)N(Xt‘OétX, O't2)

wls(X) = N(X\Xt/OéuUtQ/O‘tZ)

o pa(X) o< pa(X). (D.67)

It is easy to check that this estimator is zero-centred. We now show that this estimator is

G-equivariant to X;. Our derivation closely follows the arguments in Akhound-Sadegh et al.
(2024).

Suppose that we apply a transformation g € G to X;. Then, we have

go XD N(go X, /oy, 02 /a?). (D.68)

158 Supplementary Material for Chapter 5

Since the target density py(X) (and py(X)) is G-invariant and its score V log py(X) is G-
equivariant, the IS estimator becomes

ZzJgoX”%+thpagoX%UmdgoXm)
Zl’ 1pd(gOX())
L X0] XONG, (XD
_ atZlfl(g o + g o ? OgZ;d())pd<) _goX, (D.70)
S 1 Pa(X @)
L (x® 1 XON5,(XD
—go (at211(+LV Ongd(>)pa(XY) Xt) |
Si—1 Pa(X @)

_goX, (D.69)

(D.71)

where X5 ~ N(X, /oy, 02 /a?) which is equivalent to g o X ~ N(g o X, /oy, 02/a?).

This shows that the IS estimator is G-equivariant to X;.

Sampling Importance Resampling

Instead of estimating Equation (D.49) by IS, we can also perform sampling importance
resampling (SIR) using the IS weight wis(X) o< pa(X). Specifically, we can draw one sample
X* from the categorical distribution according to the IS weights, where

X*=x"
5.(XM 5. (X (L)
[, ~ Categorical (W, cee fd<~)1> , (D.72)
Sty pa(X D) Sy Pa(X W)
X(LL) ~ ./_[(Xt/Oét, O'?/Oé?)
Suppose that we apply g € G to X;. Now, SIR becomes
X*/ =g OX(I*)
5 x @) 5 x (@)
I, ~ Categorical(f‘l(? °)z e fd<€ °)z > , (D.73)
Yz Pa(g o X W) Yz Pa(g o X D)
go XU ~ N(go X;/ay, a7 /o).
Since X5 ~ N(X, /oy, 02 /a?) is equivalent to g o X 5 ~ N (g o X, /ay, 02 /a?) and the
target density py(X) is G-invariant, we have
X*/ — g o X(l*)
5. (X 5. (X (L)
l, ~ Categorical <fd(~)l, e ,fd<~)l> , (D.74)
Sty Pa(X D) Sty Pa(X D)

XML /_/(Xt/at, Jf/af).

D.4 Derivations Regarding Invariance and Equivariance 159

Comparing Equation (D.72) and Equation (D.74), we conclude that X*' = g o X*, and hence
the sample obtained by SIR is G-equivariant to X;. Additionally, it is easy to see that the score
at the sample obtained by SIR is also G-equivariant to X;.

Hamiltonian Monte Carlo

If we use Hamiltonian Monte Carlo (HMC) to draw samples from p;(X|X;) to estimate
Equation (D.49), we need to make the following two mild assumptions.

1. The initial state X of HMC should be zero-centred and G-equivariant with respect to Xj.
This can be easily achieved, as the initial state can simply be a sample from the proposal
q(X|X;) = N(X|X:/ay, 02 /a?) used in the IS estimator, or can be a sample from SIR.

2. The momentum variable V' in HMC should follow a zero-centred and G-invariant
Gaussian distribution, which automatically holds true for common choices such as

standard Gaussian distribution and isotropic Gaussian distribution.

Under these assumptions, we can show that the samples generated by HMC are zero-centred
and G-equivariant to X;. Below, we show that this holds for the first HMC step. The remaining
steps can be simply proved recursively by viewing the sample from the previous HMC step as
the initial state for the current HMC step.

We first note that the score of the denoising posterior p,(X | X;),
Vx log pa(X|X,) = Vxlogpa(X) 4+ Vx log N (X X), (D.75)

is zero-centred and G-equivariant if both X and X, are zero-centred. This is because
V x log pa(X) is zero-centred as shown in Proposition D.4.1 and G-equivariant, and

Vxlog N (X X) o« X — X, (D.76)

is also zero-centred and G-equivariant. For one HMC step with the leapfrog algorithm, we
have

V ~ N(O,m),
Vo =V + 2V log pa(X|X,),
i (D.77)
X =X+ 1V,

V' = Vya + 2V log pa(X'|Xo).

160 Supplementary Material for Chapter 5

The proposed sample X’ will be accepted according to the Metropolis-Hastings algorithm:

N(V'|0,m)pa(X'|Xe) }
N(V]0, m)pa(X|X;)
= min {1 ./_/:(V’|O,m) /

agMc — min {].,

(D.78)

It is easy to see that all operations maintain the zero-centred property of V' and X, and therefore
V'’ and X' are zero-centred.

Also, it is easy to check that ayyc is G-invariant. Hence, we will only focus on the leapfrog
step:
2

X =X+ %V + ;—mvx log pa(X|X:), V ~ N(O,m). (D.79)

Suppose that we apply g € G to X, and therefore X (as they are G-equivariant by assumption).
Now, the leapfrog step becomes:

X :goX—}—% (goV+ﬁlvgoxlogpd(goX‘goXt)) . goV ~N(0,m) (D.80)

2 —
=go (X + EV + n—VX logpd(X|Xt)> ., V~N(O,m) (D.81)
m 2m
=goX' (D.82)

This shows that an HMC leapfrog step X’ is G-equivariant. It is easy to show that V" is also

(GG-equivariant using the same arguments.

Langevin Dynamics

We can also use Langevin dynamics (e.g., ULA or MALA) to draw samples from p,(X|X})
to estimate Equation (D.49). Note that MALA 1is just ULA with an additional Metropolis-
Hastings correction step. Using the same argument as that for HMC, it is easy to check that
the acceptance rate ayara 1S G-invariant. Therefore, it suffices to investigate a single step of
ULA update. We will make two mild assumptions similar to those for HMC.

1. The initial state X of ULA should be zero-centred and GG-equivariant with respect to Xj.
This can be easily achieved in a similar way as discussed for HMC above.

2. The Brownian motion used in ULA should be zero-centred and GG-equivariant with

respect to X;, which automatically holds true for standard Gaussian noise.

D.4 Derivations Regarding Invariance and Equivariance 161

For a matrix of zero-centred standard Gaussian noise & ~ N (O, 1), it is easy to see that the
ULA update X' is zero-centred from the Langevin equation:

X' = X +nVxlog pa(X|X,) + V21E, (D.83)

since we have shown that V x log ps(X | X;) is zero-centred.

Suppose that we apply g € G to X; and therefore X (as they are G-equivariant by assumption).
Noticing that £ is G-invariant and using the same arguments as those for HMC, we can show
that the ULA update becomes

X"=goX +nVgxlogpa(go X|go X;) +2n(go &), go&~N(0,1) (D.84)
= go (X +7Vxlogpa(X|X,) +v20E), & ~N(0,1) (D.85)
=go X' (D.86)

This shows that a ULA update X' is G-equivariant

Annealed Importance Sampling

Another choice for drawing samples from py(X |X;) to estimate Equation (D.49) is annealed
importance sampling (AIS) or AIS followed by SIR. Recall that in IS, we directly draw
samples from a proposal ¢(X|X;) = N(X|X,/ay, 02/a?) to target at the denoising posterior
distribution py(X |X;) oc pa(X)N (X X, c?). AIS introduces a sequence of intermediate
distributions {7 (X)}/, that interpolate between the proposal ¢(X |X;) and the denoising

posterior py(X|X}) to facilitate a smoother transition:

T (X) o< q(X| X)) Prpa(X | X,)P (D.87)
s (N(X[Xofar 07 /a2)) ™ (pa(XIN (XilarX,02)™ (D8®)
o Pa(X)EN (Xi|ar X, 0F), (D.89)

where 0 = Gy < B < -+ < Bg-1 < Bk = 1, m)(X) = q(X|X}) is the proposal
distribution, and 7k (X) = pa(X|X;) is the denoising posterior distribution.

The AIS algorithm runs iteratively as follows:
¢ Draw X (o) ~ 7o) = ¢ from the proposal distribution.

e Fork = 1,2,...,K — 1, draw X(;) ~ 7() by running an MCMC sampler (e.g.,
HMC) whose initial state is the previous sample X ;1) and which leaves the current

intermediate distribution 7 invariant.

162 Supplementary Material for Chapter 5

In the end, AIS produces a sample X = X(;_1) which is close to 7(x)(X) = pa(X|Xy).
We can then calculate the IS weight in the joint space over X(y.x_1), which is the AIS
weight:

) (X)) 70 (X)) 7o Xx-1)
T0) (X)) Ty (X)) T (Xk-1)

K
H k=Pre (D.91)

Wars(X0:x-1)) =

Formally, the (self-normalised) AIS estimator works as follows:

(@ + Viogpa(X)) = X)pa(X| X)da
Y (XY + Viog pa(X D)) wars (X(((l)):K—l)) b% (D-92)
t N ’ - ts

Yl Wais (X(((l):)K—l))

where X éé::}L()_l) ~ AIS.

Assume that we use HMC, MALA or ULA as the transition kernel in AIS with their respective
assumptions. Then, the sequence of AIS samples X (%Z}L()fl) will be G-equivariant to X;.
Additionally, we note that s is G-invariant to X, since p;(X) and (p4(X)) is G-invariant
to X. Also, the score V log ps(X) is G-equivariant to X. We can now conclude that the AIS

estimator for MSI is G-equivariant to X; following the same arguments as those for IS.

Finally, if we perform AIS followed by SIR, the resulting estimator will also be G-equivariant

to X; following the same arguments as those for SIR with IS.

D.5 Experimental Setup

D.5.1 Mixture-of-Gaussians
We train all methods for 2.5 hours, which allows all of them to converge.

For our approach, we choose the total number of diffusion steps to be 7' = 30. We use a
variance-preserving (VP) scheme with oy = [['_,(1 — 3,) (Ho et al., 2020) and a linear
schedule with 3; ranging from 10~ to 0.7. We choose the weighting function to be w(t) =
1/cy. For the score network s4(x;), we use a 5-layer MLP with a hidden dimension of 400
and SiLU activation. In each inner loop, we use Adam to train the score network s, (z;) for 50
iterations using DSM with a learning rate of 10~% and a batch size of 1, 024. For the neural
sampler fy(z), we use a 5-layer MLP with a latent dimension of 2, a hidden dimension of
400 and SiLU activation. We use Adam to train the neural sampler fj(z) using MSI with a

D.5 Experimental Setup 163

learning rate of 1073, a batch size of 1,024, and gradient norm clip 10.0. Regarding posterior
sampling, we use AIS with 10 samples and 15 intermediate steps. For each AIS intermediate
step, we use the HMC transition kernel with 1 leapfrog step and step size 1.0. We resample
one of those 10 AIS samples according to the AIS weights and use that sample as the initial
state for 5 steps of MALA with step size 1072. In the end, we estimate the MSI using this
single sample (i.e., we perform Monte Carlo estimation with one sample).

For R-KL-based approaches, we align their experiment setups with that for our approach for
a fair comparison. Specifically, we use a 5-layer MLP with a hidden dimension of 400 and
SiLU activation for the score network s,(z;). In each inner loop, we use Adam to train the
score network s, (z;) for 50 iterations using DSM with a learning rate of 10~* and a batch size
of 1,024. For the neural sampler fy(z), we use a 5-layer MLP with a latent dimension of 2, a
hidden dimension of 400 and SiLU activation. We use Adam to train the neural sampler fj(z)

with a learning rate of 1072, a batch size of 1,024, and gradient norm clip 10.0.

For FAB (Midgley et al., 2023) and iDEM (Akhound-Sadegh et al., 2024), we use exactly the
same setups as described in the respective papers. Note that both of them use replay buffers to
balance exploration and exploitation. In addition, all methods except iDEM work under the
original scale [—50, 50] of the target distribution. In contrast, iDEM normalises the target to
the range [—1, 1|, which may simplify the task.

D.5.2 Many-Well-32

We train all compared models until convergence. Training and sampling time for each model
can be found in Table 5.3.

For our approach, we choose the total number of diffusion steps to be 7' = 30. We use a
variance-preserving (VP) scheme with oy = Hizl(l — Bs) (Ho et al., 2020) and a linear
schedule with j3; ranging from 10~ to 0.15. We choose the weighting function to be w(t) =
1/cy. For the score network s4(x;), we use a 5-layer MLP with a hidden dimension of 400
and SiLU activation. In each inner loop, we use Adam to train the score network s, (z;) for 50
iterations using DSM with a learning rate of 10~* and a batch size of 1, 024. For the neural
sampler fy(z), we use a 5-layer MLP with a latent dimension of 32, a hidden dimension of
400 and SiLU activation. We use Adam to train the neural sampler fy(z) using MSI with a
learning rate of 1073, a batch size of 1,024, and gradient norm clip 10.0. Regarding posterior
sampling, we use AIS with 10 importance samples and 15 intermediate steps. For each AIS
intermediate step, we use the HMC transition kernel with 1 leapfrog step and step size 0.3.
We resample one of those 10 AIS samples according to the AIS weights and use that sample
as the initial state for 5 steps of MALA with step size 5 x 1072, In the end, we estimate the
MSI using this single sample.

164 Supplementary Material for Chapter 5

For R-KL-based approaches, we align their experiment setups with that for our approach for
a fair comparison. Specifically, we use a 5-layer MLP with a hidden dimension of 400 and
SiLU activation for the score network s,(z;). In each inner loop, we use Adam to train the
score network s, (z;) for 50 iterations using DSM with a learning rate of 10~ and a batch size
of 1,024. For the neural sampler fj(z), we use a 5-layer MLP with a latent dimension of 32, a
hidden dimension of 400 and SiLU activation. We use Adam to train the neural sampler fy(z)

with a learning rate of 1073, a batch size of 1,024, and gradient norm clip 10.0.

For FAB, we use exactly the same setup as described in Midgley et al. (2023). For iDEM, we
use the same setup as that for experiments in internal coordinates as described in (Akhound-
Sadegh et al., 2024) but change the maximum score norm clip threshold to 1, 000, increase
the number of MC samples to 1, 000, and reduce o,,,, in the noise schedule to 1.0, since the
default setting does not work on this target distribution at all. Note that both of FAB and iDEM
use replay buffers to balance exploration and exploitation.

D.5.3 Double-Well-4

We train all compared models until convergence. Training and sampling time for each model
can be found in Table 5.3.

For our approach, we choose the total number of diffusion steps 7' = 30. We use a variance-
preserving (VP) scheme with o, = 221(1 — f35) (Ho et al., 2020) and a linear schedule with
¢ ranging from 107 to 0.05. We found that using a constant weighting function, w(t) = 1,
is beneficial for handling these complex targets. We use EGNN following Hoogeboom et al.
(2022) for both the score network s, and the neural sampler f,. The neural sampler has 8
layers with a hidden dimension of 144 and ReLLU activation. The score network has 4 layers
with the same width, and it is additionally conditioned on ¢. We use Adam to train the score
network s, for 100 iterations using DSM with a learning rate of 10~* and a batch size of 1024.
We use Adam to train the neural sampler fy(z) using MSI with a learning rate of 5 x 107, a
batch size of 1024, and gradient norm clip 10.0. Regarding posterior sampling, we use AIS
with 20 importance samples and 10 intermediate steps. For each AIS intermediate step, we use
1-step MALA transition kernel with step size 0.01. We resample one of those 20 AIS samples
according to the AIS weights and use that sample as the initial state for 50 steps of MALA.
We dynamically adjust the MALA step size to maintain an acceptance rate between 0.5 and
0.6. Specifically, we increase the step size by a factor of 1.5 when the acceptance rate exceeds
0.6 and decrease it by a factor of 1.5 when the acceptance rate drops below 0.5. In the end, we

estimate the MSI using this single sample.

Additionally, we employ early stopping during training. Specifically, we generate 2,000

samples using the neural sampler, which serve as the predictions. These samples are then

D.5 Experimental Setup 165

used as the initial states for 50 MALA steps, targeting the target energy. The 2,000 samples
obtained after MALA are treated as the validation set. We evaluate the energy of both the
predictions and the validation set, then calculate the total variation distances (TVDs) between
their energy histograms. We save the model with the lowest such TVD. This criterion can
be interpreted as asking the following question: how much improvement can be achieved by
running a small number of Langevin steps to the model samples? The less improvement we

can achieve, the better the model samples are.

For FAB (Midgley et al., 2023) and iDEM (Akhound-Sadegh et al., 2024), we use exactly the
same setups as described in the respective papers. Note that both of them use replay buffers to
balance exploration and exploitation.

D.5.4 Lennard-Johns-13

We train all compared models until convergence. Training and sampling time for each model
can be found in Table 5.3.

For our approach, we choose the total number of diffusion steps 7' = 30. We use a variance-
preserving (VP) scheme with oy = 2:1(1 — Bs) (Ho et al., 2020) and a linear schedule with
f3; ranging from 107% to 0.05. We also use a constant weighting function, w(¢) = 1. Both the
score network s, and the neural sampler network f, share the same 8-layer architecture with
a hidden dimension of 192 and ReL.U activation. We use Adam to train the score network
s for 100 iterations using DSM with a learning rate of 10~* and a batch size of 256. We
use Adam to train the neural sampler f, using MSI with a learning rate of 5 x 10~%, a batch
size of 256, and gradient norm clip 10.0. Regarding posterior sampling, we use IS with 500
importance samples. We then resample one of those IS samples according to the IS weights
and use that sample as the initial state for 1,000 steps of MALA. We also dynamically adjust
the MALA step size to maintain an acceptance rate between 0.5 and 0.6. Specifically, we
increase the step size by a factor of 1.5 when the acceptance rate exceeds 0.6 and decrease it
by a factor of 1.5 when the acceptance rate drops below 0.5. Unlike previous tasks, we found
that using only the last sample from MALA sometimes leads to suboptimal performance. To
improve stability, we track the samples and their gradients from the last 500 steps of MALA,
and estimate the MSI using those 500 samples. It is important to note that since the samples
and their scores are already computed during MALA, using more samples in the Monte Carlo
estimator does not incur any additional computational costs. We note that smoothing the LJ
target following Moore et al. (2024) can help to stabilise the training. However, our approach
works well even without this smoothing. Additionally, we employ early stopping in the same
way as in DW-4.

166 Supplementary Material for Chapter 5

For FAB (Midgley et al., 2023) and iDEM (Akhound-Sadegh et al., 2024), we use exactly the
same setups as described in the respective papers. Note that both of them use replay buffers to

balance exploration and exploitation.

D.6 Guidance for Hyperparameter Tuning

Below, we provide guidance for tuning the key hyperparameters in our method.

* Or in the VP noise schedule should not be too large, as this can lead to inaccurate
posterior sampling and worse performance. This is because the neural sampling will
tend to favour the mean of the global mass for large (3, which can be seen in Figure 5.3

in the main text: the model is biased towards the mean as the noise level increases.

* For DW-4 and L-13, it is important to use a large EGNN for the neural sampler. Unlike
diffusion models which generates each sample with a large number of sampling steps
(Akhound-Sadegh et al., 2024; Hoogeboom et al., 2022), our approach involves learning
a one-step sampling generator and thus requires greater model capacity. We tested
smaller networks, such as an EGNN with 6 layers and a hidden dimension of 128,
which resulted in worse performance compared to the larger architecture used in our
experiments. On the other hand, the score network does not need to have the same
capacity. For example, we found that using a shallower score network is sufficient to
achieve optimal performance on DW-4. Additionally, we found using ReLU in EGNNs
resulted in better performance than SiLU, possibly because ReLLU allows our one-step

neural sampler to model complex distributions with large Lipschitz constants.

* The weight function w(t) also requires careful tuning. While other weighting functions
commonly used in diffusion models include o2/« or 02 /a?, we found using 1/c; or
even uniform weighting is more stable in our approach. An empirical guideline for
choosing between these is as follows. For more complex targets like DW-4 and LJ-13,
a uniform weighting function encourages exploitation. On the other hand, for highly
multi-modal target distributions like MW-32, using the 1/a; weighting function can

accelerate exploration.

* The batch size cannot be too small. Empirically, we found that training could be unstable
if a small batch size is used. In general, we recommend using a large batch size like
1,024 if it fits into the GPU memory.

D.7 Reproducibility Statement 167

D.7 Reproducibility Statement

Our open-source implementation of R-DiKL for reproducing the experimental results in
Chapter 5 can be found at https://github.com/jiajunhe98/DiKL. In our experiments, we also
used the following codebases for the benchmarks and baselines.

* The implementation of the DW-4 and LJ-13 energy functions was taken from the bgflow
repository (https://github.com/noegroup/bgflow) (Kohler et al., 2020).

* The PyTorch implementation of FAB (https://github.com/lollcat/fab-torch) (Midgley
et al., 2023) was used for its experiments on MoG-40 and MW-32.

* The JAX implementation of FAB (https://github.com/lollcat/se3-augmented-coupling-flows)
(Midgley et al., 2024) was used for its experiments on DW-4 and LJ-13.

* The PyTorch implementation of iDEM (https://github.com/jarridrb/DEM) (Akhound-
Sadegh et al., 2024) was used for all its experiments.

https://github.com/jiajunhe98/DiKL
https://github.com/noegroup/bgflow
https://github.com/lollcat/fab-torch
https://github.com/lollcat/se3-augmented-coupling-flows
https://github.com/jarridrb/DEM

	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	1.1 Motivation
	1.2 Thesis Outline and Contributions
	1.3 List of Publications

	2 Background
	2.1 Probabilistic Inference
	2.1.1 Exact Inference
	2.1.2 Sampling-Based Inference

	2.2 Deep Learning
	2.2.1 Deep Neural Networks
	2.2.2 Supervised Representation Learning

	2.3 Probabilistic Deep Learning
	2.3.1 Bayesian Neural Networks
	2.3.2 Deep Generative Models

	2.4 Molecular Representations for Machine Learning
	2.4.1 Molecular Property Prediction
	2.4.2 Molecular Configuration Sampling

	3 Meta-Learning Gaussian Processes for Data-Efficient Representation Learning
	3.1 Motivation and Overview
	3.2 Preliminaries
	3.2.1 Few-Shot Learning
	3.2.2 Deep Kernel Gaussian Processes

	3.3 Adaptive Deep Kernel Fitting with Implicit Function Theorem
	3.3.1 The ADKF-IFT Framework for Training Deep Kernel GPs
	3.3.2 Efficient Meta-Training Algorithm
	3.3.3 ADKF-IFT as a Unification of Previous Methods
	3.3.4 Highlighted ADKF-IFT Instantiation

	3.4 Related Work
	3.4.1 Deep Kernel GPs
	3.4.2 Meta-Learning
	3.4.3 Multi-Task GPs
	3.4.4 Implicit Function Theorem in Machine Learning

	3.5 Empirical Evaluation
	3.5.1 Few-shot Molecular Property Prediction on MoleculeNet
	3.5.2 Few-shot Molecular Property Prediction on FS-Mol
	3.5.3 Out-of-Domain Molecular Property Prediction and Optimisation

	3.6 Discussion

	4 Probabilistic Multi-Task Regression for Identifiable Representation Learning
	4.1 Motivation and Overview
	4.2 Preliminaries and Related Work
	4.2.1 Disentanglement and Independent Component Analysis
	4.2.2 Conditional Prior Models for Non-Linear ICA
	4.2.3 Structural Approaches to Identifiability

	4.3 Identifiable Multi-Task Representation Learning
	4.3.1 Problem Formulation
	4.3.2 Stage 1: Multi-Task Regression Network
	4.3.3 Stage 2: Multi-Task Linear Causal Model

	4.4 Empirical Evaluation
	4.4.1 Synthetic Data
	4.4.2 Real-World Molecular Data

	4.5 Discussion

	5 Diffusion-Inspired Training of Deep Generative Models for Enhanced Sampling
	5.1 Motivation and Overview
	5.2 Preliminary: Kullback-Leibler Divergence
	5.2.1 Definition of KL Divergence
	5.2.2 Forward KL Minimisation
	5.2.3 Reverse KL Minimisation

	5.3 Diffusive Kullback-Leibler Divergence
	5.3.1 Definition of DiKL Divergence
	5.3.2 Reverse DiKL Encourages Mode-Covering
	5.3.3 Training Neural Samplers with Reverse DiKL

	5.4 Related Work
	5.4.1 Neural Samplers
	5.4.2 Variational Score Distillation

	5.5 Empirical Evaluation
	5.5.1 Synthetic Multi-Modal Target Distribution
	5.5.2 Many-Body Particle Systems

	5.6 Discussion

	6 Conclusions and Future Work
	6.1 Thesis Summary
	6.2 Future Research Directions

	References
	Appendix A Supplementary Material for chapter:background
	A.1 Derivation of Denoising Score Identity
	A.2 Derivation of Denoising Score Matching

	Appendix B Supplementary Material for chapter:meta-gp
	B.1 Cauchy's Implicit Function Theorem
	B.2 Configurations of ADKF-IFT
	B.3 Configurations of All Baselines on FS-Mol
	B.4 Further Comparisons Between DKT and ADKF-IFT
	B.5 Meta-Testing Cost on FS-Mol
	B.6 Reproducibility Statement

	Appendix C Supplementary Material for chapter:multi-task
	C.1 Proof of thm:lin-id
	C.2 Proof of thm:strong-id
	C.3 Derivation of the Conditionally Factorised Prior
	C.4 Derivation of the Marginal Likelihood for MTLCM
	C.5 Model Configurations
	C.6 Ablation Study for the Linear Synthetic Experiment
	C.7 Reproducibility Statement

	Appendix D Supplementary Material for chapter:dikl
	D.1 DiKL Divergence is a Lower Bound of KL Divergence
	D.2 Derivation of the Analytical Gradient for R-DiKL
	D.3 Derivations of Score Identities
	D.3.1 Derivation of Target Score Identity
	D.3.2 Derivation of Mixed Score Identity

	D.4 Derivations Regarding Invariance and Equivariance
	D.4.1 Proof of prop:geqvar
	D.4.2 Monte Carlo Score Estimators are G-Equivariant

	D.5 Experimental Setup
	D.5.1 Mixture-of-Gaussians
	D.5.2 Many-Well-32
	D.5.3 Double-Well-4
	D.5.4 Lennard-Johns-13

	D.6 Guidance for Hyperparameter Tuning
	D.7 Reproducibility Statement

