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Sampling

Sampling from unnormalized distributions
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Boltzmann distribution with unnormalized density
p(x) = exp(—E(z)/kT)

- p(x) easy to evaluate but hard to sample from

- Score function (force) can be evaluated: V, logp(x) = -V, E(x)

Noé, Frank, et al. "Boltzmann generators: Sampling equilibrium states of many-body systems with deep learning.” Science 365.6457 (2019): eaaw1147.



Markov Chain Monte Carlo

Sampling from unnormalized distributions

“Standard” solution: Markov chain Monte Carlo (MCMC)

Challenges: % g

How to bridge modes?
Adding Gaussian Noise!



Diffusion Connects Modes
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Sampling in the Noisy Space
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px N = /N(a:a|a:,a)p(a:)da:

No data to train a score model!

Intractable :(




Diffusion-Inspired Samplers

We propose two solutions:
- Diffusive Gibbs Sampler (model-free MCMC sampler)

- Diffusive Neural Sampler (model-based neural sampler)



Diffusive Gibbs Sampler (NaTVE) Joint space is more tractable :)
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p(z,25) < p(x)N (252, 0)

o ~ N(vs|x,0) Ty =X+ O€

p*N e ~N(0,1)



Diffusive Gibbs Sampler (NaTVE) Joint space is more tractable :)
p(z,25) < p(x)N (252, 0)
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Diffusive Gibbs Sampler (Na.I'VE) Joint space is more tractable :)
(2, 25) o< pla)N (24|, 0)
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Diffusive Gibbs Samp|er (Na.I.VE) Joint space is more tractable :)
p(z,25) < p(x)N (252, 0)
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Diffusive Gibbs Sampler (NaTVE) Joint space is more tractable :)
p(z,25) < p(x)N (252, 0)
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A Caveat in Denoising Posterior Sampling

unknown mixing time!

MALA/HMC/AIS/...
px N

b p(z|rs) < p(x)N(xo|x, o)




Metropolis-within-Gibbs

p*x N

unknown mixing time!

MALA/HMC/AIS/...

b p(z|rs) < p(x)N(xo|x, o)

How to ensure 2’ ~ p(z|x,) ?

/ MH before posterior

o SECi]n(‘lgh‘nlga') = N(CC/|:L‘U7 o)
o = min (1 p(x/’aj")q@’xo))

p(zlre)q(e|z,)




Diffusive Gibbs Sampler (with MH corrector)
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Diffusive Gibbs Sampler (with MH corrector)
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Diffusive Gibbs Sampler (with MH corrector)
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Diffusive Gibbs Sampler (with MH corrector)
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. it
p Accept? NO!
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Diffusive Gibbs Sampler (with MH corrector)
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Diffusive Gibbs Sampler (with MH corrector)
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Accept? YES!



Diffusive Gibbs Sampler (with MH corrector)
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Diffusive Gibbs Sampler (with MH corrector)

px N

% collect these samples

p v, 7 ~ pla, 7o)

— = ~ p(x)



Unbalanced Modes
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Choosing the Right Noise Level is Important

- Noise should not be too small
T x, ~N(xs|z, o)

- Noise should not be too large

[p(m‘xa)]oc p(x)W(aja‘x, Uj ~ p(z)

more Gaussian-like “regularizer”

- Use a noise schedule 01 <02 <---<op

T— Ty T —>Tgp , —> " —>T Ly, —> T —> Loy —> -



Results: Alanine Dipeptide

(c) MALA (10° samples, 1.0x10° energy evaluations) (d) HMC (10° samples, 1.0x10° energy evaluations)

n - n

, (b) MD (107 samples, 2.3x 10! energy evaluations)
(e) PT (10° samples, 2.3x 10*° energy evaluations) (f) DiGS (10° samples, 1.0x 10° energy evaluations)



Diffusive Gibbs Sampler

Limitation: samples are dependent

Can we train a neural network to generate independent samples?



Neural Sampler

Can we train a neural network to generate independent samples?

ngZ%X

z~p(2),x = fo(2)

po() = / 5z — fo(2))p(2)dz

Without training data!



Reverse KL Divergence

Can we train a neural network to generate independent samples?

...without training data

— x) lo Po(2) T
Dalpollel = [ po(e)1og 205

— xope(x)x C
—/pe()lgﬁ(x)d + C.

(1) Mode-seeking; (2) Intractability



Reverse KL Divergence

(1) Mode-seeking;



Reverse KL Divergence
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Reverse KL Divergence

(1) Mode-seeking;




| How to Train Neural Samplers with Diffusion?

If trained with KL divergence... model only learns noisy distribution!
ﬂ add same amount noise to model!

p p* N(0,07) p*N(0,03)

')1) Mode-seeking;



Diffusive KL divergence

Define Gaussian noisy kernels k;(z¢|z) = N (2|, 071)

T

DiKL[pg||p] =) w(t) Dy [pe * ki||p * ki

t=1

DiKLpllg) =0 = p=q

‘)1) Mode-seeking;



Diffusive KL divergence

Why does it avoid mode-seeking?

Model: 1D Gaussian
Target: 1D Mixture of 2 Gaussians

clean KL

KL at noise level 0.1

KL at noise level 0.5

KL at noise level 1.0

KL at noise level 5.0

log(o)
o

T T T T T T -5 T T -5
-5 0 5 -5 0 5

* Low noise levels: refine around local mode. ¢ High noise levels: explore modes.

\yf) Mode-seeking;



Gradient Estimation for Diffusive KL divergence

D1, [pe X kt’ ]p x kt]

P : target density

p: unnormalized target density
Dy : model density

Do.t: po * ki

Di:p* ke

(2) Intractability



Gradient Estimation for Diffusive KL divergence

pe,t(ﬂft)

pt(ﬂft)

Dxv|po * ki||p * k] = /Pe,t(ﬂft) log dr,

(2) Intractability



Gradient Estimation for Diffusive KL divergence

a.’]ft

VoDxr|pe * ki||p * ki|= / Poa () (Vi 10 pos(e) = Vo, log py(r)) 5t d

(2) Intractability



Gradient Estimation for Diffusive KL divergence

________ O
VoDxw|pe * ki||p * ki|= / Po t(:r:t)('th log po,¢(+) L:th logpt(a:t):):%:dxt

-_—e— e e e e e

(2) Intractability



Gradient Estimation for Diffusive KL divergence

T = Oétf@(z) + Ot€

auto-diff (VJP) by torch, jax, etc...

(2) Intractability



Gradient Estimation for Diffusive KL divergence

- s EE e e e . .y

- do not know model density Po
- but can easily generate samples from model Po

How to estimate this noisy score given only model samples?

Train a diffusion model to approximate model score!

mqgn/ I8¢ (z¢,t) — Vi, log ki(z¢|2)||*po (2) ki (24| ) dpda

(2) Intractability



Gradient Estimation for Diffusive KL divergence

- e . . .y,

_-— e e e . -

know P (up to some normalization constant)

Score Identity: can be sampled available

1

Ve, logpi(ze) = || p(x]ze) (e (x +&x 10%29(37)]) —x¢) dx

p(CIZ‘ZE‘t) X ﬁ(x)kt(xt\x) As before, use MALA/HMC/AIS, ...

(2) Intractability



Training Neural Sampler with Diffusive KL divergence

VoDxw|pe * ki||p * ki|= / Po t(:vt)('th log po,¢(+) :L:th logpt(att)i):%::lxt

-_—em s s e s =m _-— e e e e = - —

(1) Mode-covering:
- match KL divergence at different noise levels

(2) Tractable:
- estimate noisy model score by training a diffusion model
- estimate noisy target score by score identity with Monte Carlo

Expectation-Maximization (EM) Style Model Training!



Results: Mixture of 40 Gaussians




Results: Many Well 32 Potential Energy

Highly multi-modal: 2°° modes in total obtained by stacking double well 32 times.

Potential

Well Index-2

Saddle

Index-1
Saddle

(e) DIiKL (ours)

Image from https://www.chemicalreactions.io/act2/four_well_morse/four_well_morse-jekyll.html



Results: n-body Systems

Double-Well-4 Lennard-Jones-13
[ Ground Truth [ FAB [ DIiKL (ours) iDEM
& e 0.5 1 £ 0.05 14
C C
20.1- a
0.0 T T 0,0 = T 0-00 - 0 T T
-25 =20 -15 -10 2 4 6 -60 -40 -20 0 2 4
Energy Interatomic Distance Energy Interatomic Distance
FAB iDEM DiKL (ours)
MW-32 3.5h 3.5h 2.5h
Training DW-4 4.5h 4.5h 0.8h
LJ-13 21.5h 6.5h 3h
MW-32 0.01s 7.2s 0.01s

Batch Sampling

(1,000 samples) DW-4 - 2.6s 0.01s

LJ-13 - 19.7s 0.02s




Bottleneck of Diffusion-Inspired Samplers

sampling from p(il? | iUnoise)

- Unsatisfactory: denoising posterior sampling could still be hard
- Inevitable: no data is available to train a denoiser network



Reference and Collabroators

Diffusive Gibbs Sampling
Wenlin Chen*, Mingtian Zhang*, Brooks Paige, José Miguel Hernandez-Lobato, David Barber
International Conference on Machine Learning (ICML), 2024.

Training Neural Samplers with Reverse Diffusive KL Divergence
Jiajun He*, Wenlin Chen*, Mingtian Zhang*, David Barber, José Miguel Hernandez-Lobato
International Conference on Atftificial Intelligence and Statistics (AISTATS), 2025.

Jiajun He Mingtian Zhang Brooks Paige David Barber  Miguel Hernandez-Lobato



