

Wenlin Chen^{*,1,2}, Mingtian Zhang^{*,3}, Brooks Paige³, José Miguel Hernández-Lobato¹, David Barber³ ¹University of Cambridge, UK; ²MPI for Intelligent Systems, Germany; ³University College London, UK.

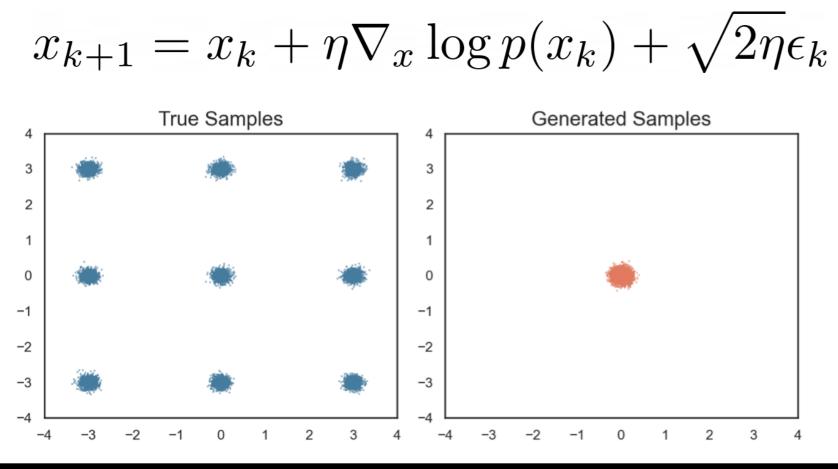
Challenge of Multi-modal Sampling

• Goal: Generate independent samples from an unnormalized distribution:

$$p(x) = \frac{\exp(-E(x))}{Z}$$

• Challenge: Sampling from distributions with disconnected/distant modes is extremely difficult for many MCMC samplers.

• Example: Score-based Langevin dynamics cannot capture distant modes.

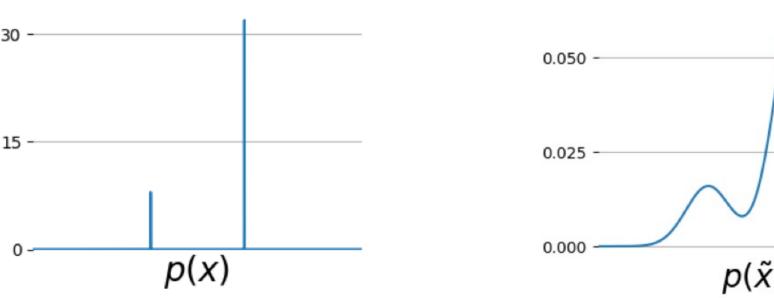


Convolution-based Sampling

• Observation: Diffusion models leverage Gaussian convolution kernels to bridge disconnected modes in multi-modal distributions.

$$p(\tilde{x}|x) = \mathcal{N}(\tilde{x}|\alpha x, \sigma^2 I) \qquad p(\tilde{x}) = \int p$$

• **Property:** The modes in convolved noisy distributions $p(\tilde{x})$ are connected via non-negligible density paths.



• Idea: Can we use samples $\tilde{x} \sim p(\tilde{x})$ as initial points for sampling from p(x) since they are more likely to cover more modes.

• Issue: Difficult to sample from $p(\tilde{x})$ since its score function is intractable.

$$\nabla_{\tilde{x}} \log p(\tilde{x}) = \nabla_{\tilde{x}} \log \int \exp\left(-E(x) - \frac{\|\tilde{x}\|}{2}\right)$$

Accepted at ICML 2024. Paper link: *https://arxiv.org/abs/2402.03008*

Diffusive Gibbs Sampling

 $p(\tilde{x}|x)p(x)\,\mathrm{d}x.$

 $-\alpha x \|^2$ $2\sigma^2$

Diffusive Gibbs Sampling (DiGS)

• Idea: Draw samples from the joint $p(x, \tilde{x}) = p(\tilde{x}|x)p(x)$ via Gibbs sampling by repeating the following two steps.

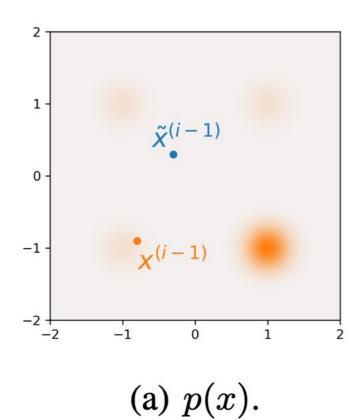
1. Adding noise $\tilde{x} \sim p(\tilde{x}|x)$.

 $\tilde{x} = \alpha x + \sigma \epsilon,$

2. Denoising sampling $x \sim p(x|\tilde{x})$ with a score-based sampler.

 $\nabla_x \log p(x|\tilde{x}) = -\nabla_x E$

• Blindness Issue: The score-based sampler cannot capture the correct density weighting of different modes in $p(x|\tilde{x})$.



• Solution: We propose a Metropolis-Hasting (MH) scheme to facilitate mixing across modes by initialize the denoising sampling step with the following proposal distribution.

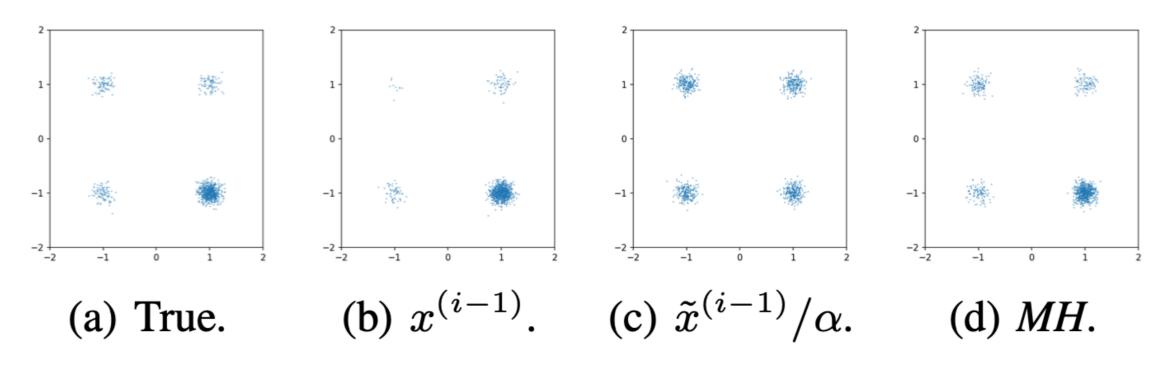
$$q(x|\tilde{x}^{(i-1)}) = \mathcal{N}(x|\tilde{x})$$

The MH proposal $x'_{init} \sim q(x|\tilde{x}^{(i-1)})$ is accepted with probability

$$a_{init} = \min\left(1, \frac{p(x'_{init}|\tilde{x})}{p(x^{(i-1)})}\right)$$

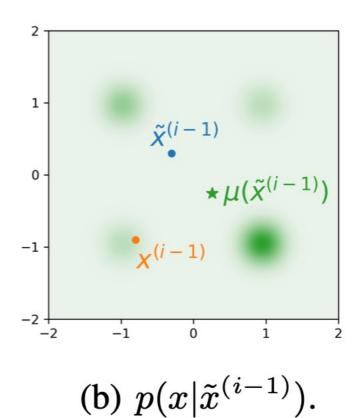
Otherwise, the initial position is set to the previous clean sample $x^{(i-1)}$.

• Comparison of Initializations for Denoising Sampling:



$$\epsilon \sim N(0, I),$$

$$E(x) - rac{lpha \left(lpha x - ilde{x}
ight)}{\sigma^2}.$$

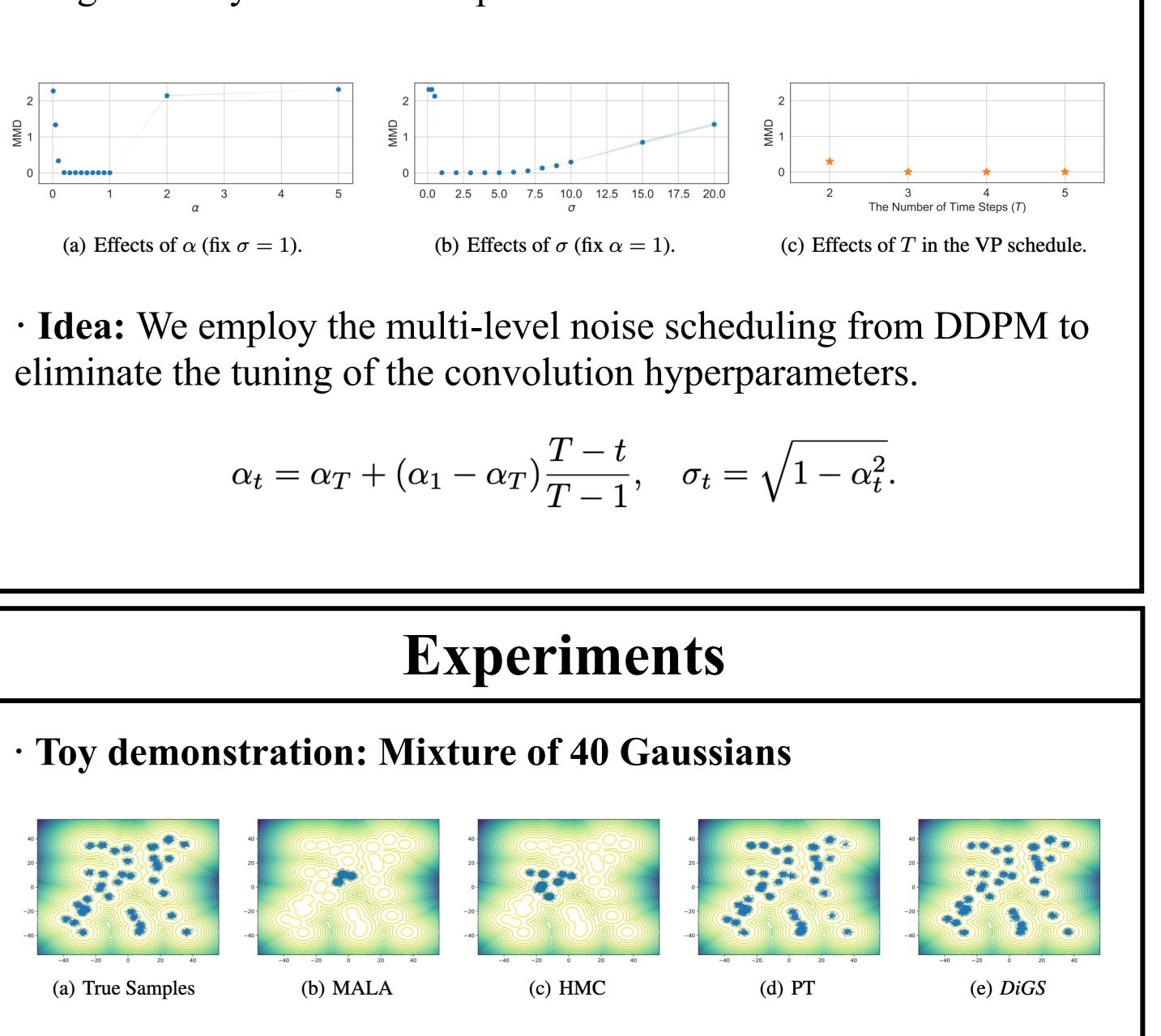


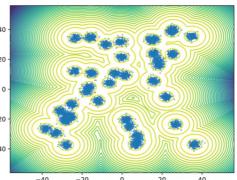
 $\tilde{c}^{(i-1)}/lpha, (\sigma/lpha)^2 I)$

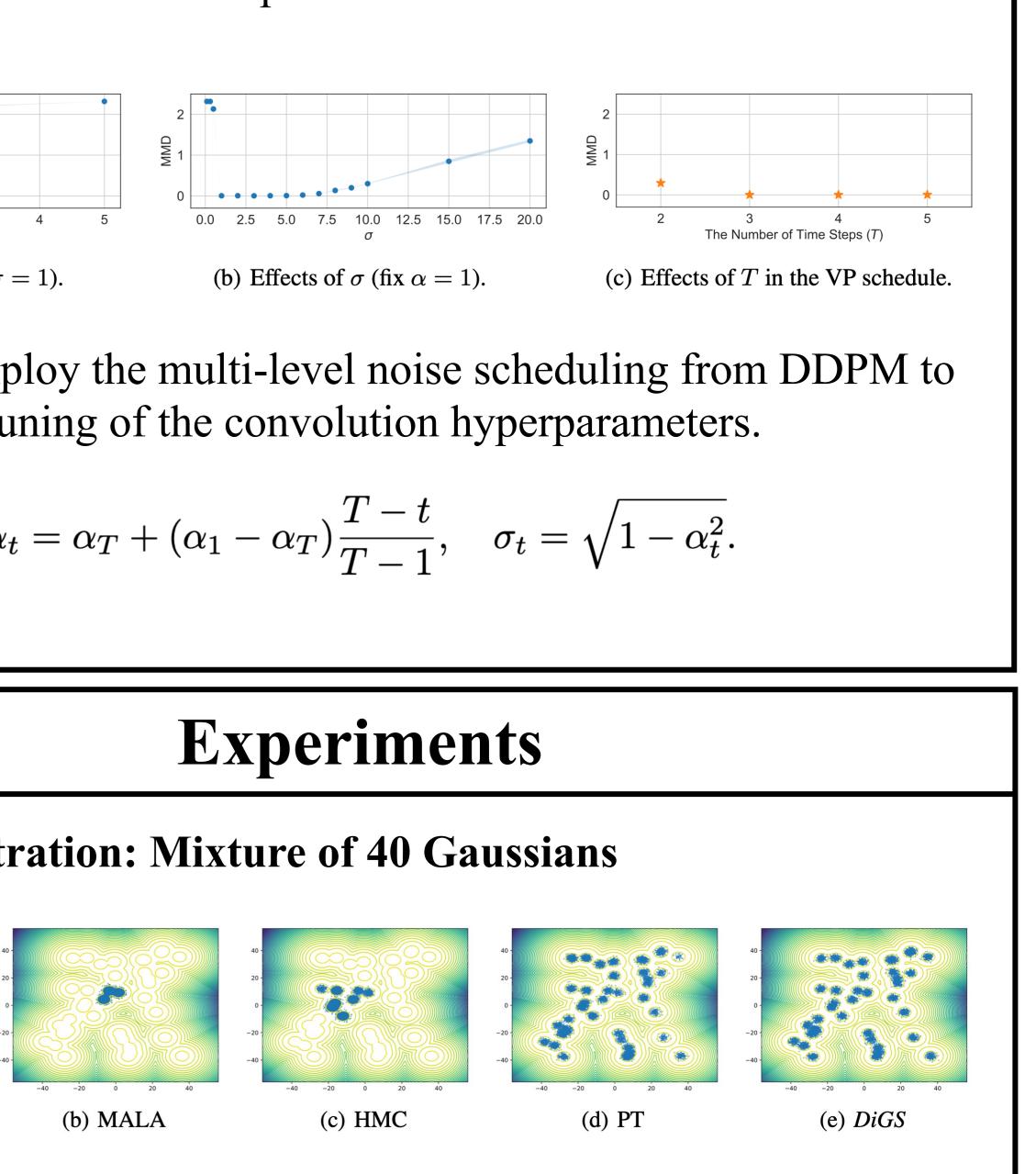
 $|\tilde{x}^{(i-1)})q(x^{(i-1)}|\tilde{x}^{(i-1)})\rangle$ $| ilde{x}^{(i-1)})q(x'_{init}| ilde{x}^{(i-1)})|$

Multi-level Noise Scheduling

• **Observation:** The choice of the convolution hyperparameters α and σ significantly influence the performance of DiGS.



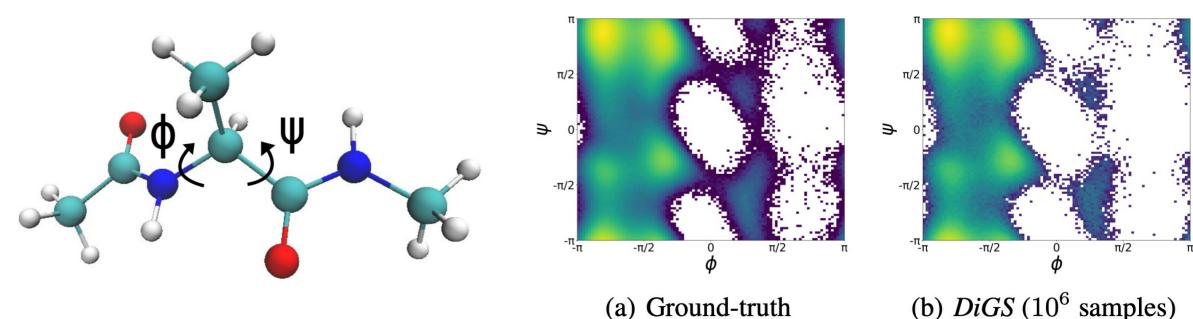




· Bayesian Inference: Bayesian Neural Network

Table 3. Average test predictive NLL for the BNN estimated			
10^3 samples generated by each sampler.			
	Sampler	NLL	#energy evaluations
-	MAP	0.548 ± 0.066	$5.0 imes 10^6$
	MALA	0.399 ± 0.014	$5.0 imes10^6$
	HMC	0.315 ± 0.012	$5.0 imes10^6$
	PT	0.241 ± 0.005	$5.0 imes10^6$
-	DiGS	0.189 ± 0.002	$5.0 imes 10^6$

AI for Science: Molecular Configuration Sampling



Paper QR Code

(b) DiGS (10⁶ samples)