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Abstract
The inadequate mixing of conventional Markov
Chain Monte Carlo (MCMC) methods for multi-
modal distributions presents a significant chal-
lenge in practical applications such as Bayesian in-
ference and molecular dynamics. Addressing this,
we propose Diffusive Gibbs Sampling (DiGS), an
innovative family of sampling methods designed
for effective sampling from distributions charac-
terized by distant and disconnected modes. DiGS
integrates recent developments in diffusion mod-
els, leveraging Gaussian convolution to create
an auxiliary noisy distribution that bridges iso-
lated modes in the original space and applying
Gibbs sampling to alternately draw samples from
both spaces. Our approach exhibits a better mix-
ing property for sampling multi-modal distribu-
tions than state-of-the-art methods such as parallel
tempering. We demonstrate that our sampler at-
tains substantially improved results across various
tasks, including mixtures of Gaussians, Bayesian
neural networks and molecular dynamics.

1. Introduction
Generating samples from complex unnormalized probability
distributions is an important problem in machine learning,
statistics and natural sciences. Consider an unnormalized
target distribution of the form

p(x) =
exp(−E(x)

Z
, (1)

where x ∈ Rd is the variable to be sampled, E : Rd →
R is a lower-bounded differentiable energy function, and
Z =

∫
exp(−E(x)) dx is the (intractable) normalization

constant. Our goal is to draw independent samples x ∼
p(x) from the target distribution and estimate expectations
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of functions
∫
h(x)p(x) dx under the target distribution

p(x). Since Z is independent of x and E is assumed to be
differentiable, we can directly evaluate the gradient of the
log density of the target distribution

∇x log p(x) = −∇xE(x), (2)

which is also known as the score function. This assumption
is commonly satisfied in various practical applications, such
as posteriors in Bayesian inference (Welling & Teh, 2011),
score/energy networks in generative image modelling (Song
& Ermon, 2019), and Boltzmann distributions in statistical
mechanics (Noé et al., 2019). Various score-based sampling
methods have been proposed to sample from unnormalized
distributions, which we introduce below.

1.1. Score-Based MCMC Methods

Unadjusted Langevin Algorithm (ULA) (Grenander &
Miller, 1994; Roberts & Tweedie, 1996) follows the transi-
tion rule given by a discrete-time Langevin SDE:

xk+1 = xk + η∇x log p(xk) +
√

2ηϵk, (3)

where ϵk ∼ N(0, I). For an infinitesimal step size η, the
Markov chain converges to the target p(x) as k →∞.

Metropolis-adjusted Langevin Algorithm (MALA) (Roberts
& Tweedie, 1996; Roberts & Stramer, 2002) defines a pro-
posal xk+1 using the ULA update rule and additionally cor-
rects the bias according to the transition probability given
by the Metropolis-Hasting (MH) algorithm:

aMALA ≡ min

{
1,

exp(−E(xk+1))q(xk|xk+1)

exp(−E(xk))q(xk+1|xk)

}
, (4)

where the proposal distribution is given by

q(x′|x) = N (x′|x+ η∇x log p(x), 2ηI). (5)

Hamiltonian Monte Carlo (HMC) (Duane et al., 1987; Neal
et al., 2011) augments the original variable x with an auxil-
iary momentum variable v, which defines a joint distribution

p(x, v) = p(x)p(v) ∝ e−E(x)−K(v), (6)

where p(v) = N (v|0,M) corresponds to the kinetic energy
K(v) = 1

2v
TM−1v. The total energy, or Hamiltonian, is
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Figure 1. Challenge of multi-modal sampling with score-based
MCMC. The true samples represent a mixture of 9 Gaussians and
each Gaussian has a standard deviation σ = 0.1. The generated
samples are produced by MALA initialized at the origin.

denoted by H(x, v) = E(x) + K(v). HMC generates
samples of x and v by simulating the Hamiltonian equations

dx

dt
=
∂H

∂v
=M−1v,

dv

dt
= −∂H

∂x
= ∇x log p(x). (7)

Accurate numerical simulation of the Hamiltonian equations
can be done by the leapfrog algorithm (Neal et al., 2011),
with discretization bias corrected by the MH algorithm.

Despite the introduction of HMC to address the challenge
of exploring a distribution’s support, it can still be ineffec-
tive for distributions with disconnected modes in practice.
This ineffectiveness is due to HMC’s dynamics struggling to
cross low-density barriers that separate the modes, leading
to prolonged transitions from one mode to another (Pompe
et al., 2020). In general, score-based methods utilize local
gradient information to propose subsequent states, which
presents challenges in multi-modal distributions when there
is insufficient bridging density to connect different modes.
This limited connectivity impairs the resulting samples’ abil-
ity to accurately represent the entire distribution, a limitation
illustrated in Figure 1. To enhance mode coverage in multi-
modal sampling by bridging disconnected modes, a popular
approach is Gaussian convolution, which has been widely
used in the recent developments of diffusion models (Sohl-
Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020)
which we discuss below.

1.2. Convolution-Based Method

For a target distribution p(x) and a Gaussian convolution
kernel p(x̃|x) = N (x̃|αx, σ2I), a convolved distribution
p(x̃) can be constructed as follows:

p(x̃) =

∫
p(x̃|x)p(x) dx. (8)

Since p(x̃|x) has the full support of Rd, it can effectively
create non-negligible density paths between disconnected
modes in p(x̃), which makes the modes in p(x̃) exhibit bet-
ter connectivity compared to those in p(x). This cherished
property has made Gaussian convolution a popular remedy

to heal the blindness of score matching (Song & Ermon,
2019; Wenliang & Kanagawa, 2020; Zhang et al., 2022) or
fix KL divergence training for distributions with disjoint or
ill-defined density (Roth et al., 2017; Zhang et al., 2020;
2023b; Brown et al., 2022).

Due to the mode-bridging property of convolution, it is gen-
erally easier for score-based samplers to explore the whole
space of p(x̃) than p(x). If we could obtain numerous sam-
ples x̃ ∼ p(x̃), then it is more likely that these samples
will encapsulate a broader range of modes in p(x̃) which
are close to different high-density areas in p(x). Conse-
quently, these samples of x̃ can then serve as initial points
for sampling from the original target p(x), which facilitates
score-based samplers in capturing different modes in p(x).
However, the score function of the convolved distribution

∇x̃ log p(x̃) = ∇x̃ log

∫
exp

(
−E(x)− ∥x̃− αx∥

2

2σ2

)
dx

(9)

is typically intractable for non-Gaussian targets p(x), which
makes score-based sampling from p(x̃) infeasible.

In the next section, we introduce a novel sampling method
named Diffusive Gibbs Sampling (DiGS), which leverages
convolution to enhance multi-modal sampling while avoid-
ing the intractability of the convolved score function.

2. Diffusive Gibbs Sampling
Instead of trying to directly produce samples from the in-
tractable convolved distribution p(x̃), Diffusive Gibbs Sam-
pling (DiGS) uses a Gibbs sampler to sample from the joint
distribution p(x, x̃) = p(x̃|x)p(x). This Gibbs sampling
procedure involves alternately drawing samples from the
two conditional distributions p(x̃|x) (the convolution ker-
nel) and p(x|x̃) (the denoising posterior). In each step, for
a given data sample x(i−1) from the target p(x), we draw

1. a noisy sample x̃(i−1) ∼ p(x̃|x = x(i−1)),
2. a new data sample x(i) ∼ p(x|x̃ = x̃(i−1)).

For a Gaussian convolution kernel p(x̃|x) = N (x̃|αx, σ2I),
noisy samples can be easily obtained by corrupting data
samples with Gaussian noises:

x̃ = αx+ σϵ, ϵ ∼ N(0, I). (10)

Here, 0 < α < 1 is a contraction factor inspired by Diffu-
sion models (Ho et al., 2020) and σ determines the smooth-
ness level of the Gaussian convolution. Intuitively, a small α
will compress the distribution to make the modes closer and
a large σ will encourage the sampler to jump out of the local
modes. In Section 2.2, we will examine the effects of these
two parameters. Strategies for selecting these parameters in
practical scenarios will be further discussed in Section 2.3.
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(a) p(x). (b) p(x|x̃(i−1)).

Figure 2. Visualization of an MoG target with unequal weights
w = [0.1, 0.1, 0.1, 0.7] for different components. (a) Density
heatmap of the target p(x), a data sample x(i−1) and a noisy
sample x̃(i−1). (b) Density heatmap of the denoising posterior
p(x|x̃(i−1)) with Gaussian convolution parametersα = 1, σ = 1.

The denoising posterior p(x|x̃) is proportional to the joint
distribution p(x, x̃) = p(x̃|x)p(x), taking the form

p(x|x̃) ∝ exp

(
−E(x)− ∥αx− x̃∥

2

2σ2

)
, (11)

which has a tractable score function (Gao et al., 2020; Huang
et al., 2023):

∇x log p(x|x̃) = −∇xE(x)− α (αx− x̃)
σ2

. (12)

Therefore, common score-based methods like ULA, MALA,
or HMC could be directly applied to sample from the de-
noising posterior p(x|x̃). It is worth noting that, in con-
trast to directly sampling from the original target p(x) ∝
exp(−E(x)) using score-based methods, incorporating an
additional quadratic term as in Equation 11 improves the
Log-Sobolev conditions, which in turn significantly in-
creases the convergence speed of score-based samplers such
as ULA (Vempala & Wibisono, 2019), see Huang et al.
(2023) for further in-depth analysis. Below, we show that
the DiGS yields a p(x, x̃)-irreducible and recurrent Markov
Chain under certain regularity conditions. Intuitively, these
properties ensure that the chain comprehensively explores
the state space from any starting point (irreducibility) and
effectively captures the target distribution by infinitely re-
visiting every state (recurrence) (Robert et al., 1999).

Theorem 2.1. For an absolutely continuous target dis-
tribution p(x), DiGS with a Gaussian convolution kernel
p(x̃|x) = N (x̃|αx, σ2I) (α > 0, σ > 0) yields a p(x, x̃)-
irreducible and recurrent Markov Chain.

The proof of Theorem 2.1 can be found in Appendix A. In
addition to being a valid MCMC sampler, there are some
practical considerations that can impact the performance of
DiGS. We will discuss these in the following sections.

(a) True. (b) x(i−1). (c) x̃(i−1)/α. (d) MH.

Figure 3. Comparison of different initialization techniques for de-
noising posterior sampling on an unequal weighted MoG target
described in Figure 2(a). In each case, we generate 1,000 samples
using a Gaussian convolution kernel with α = 1, σ = 1.

Table 1. MMD between true samples and samples obtained using
different initialization techniques for denoising posterior sampling
on an unequal weighted MoG target described in Figure 2(a).

Init. x(i−1) x̃(i−1)/α MH
MMD 0.15± 0.01 0.92± 0.04 0.03± 0.01

2.1. Initialization of the Denoising Sampling Step

Ideally, one might hope to construct an exact Gibbs sampler
where the score-based sampler targeting p(x|x̃(i−1)) draws
a true sample x(i) at each iteration. Unfortunately, when
the target distribution has very disconnected modes, the
resulting posterior p(x|x̃) may still exhibit a multi-modal
nature. For instance, Figure 2(a) illustrates the density of an
MoG with unbalanced weights. For a given previous data
sample x(i−1), we generate a noisy sample x̃(i−1) using a
Gaussian convolutional kernel with α = 1 and σ = 1. The
corresponding denoising density p(x|x̃(i−1)) is depicted
in Figure 2(b), which exhibits four distinct modes with
varying weights. In such scenarios, selecting an appropriate
initial point, x(i)init, for the subsequent sampling process
x(i) ∼ p(x|x̃ = x̃(i−1)) is crucial for score-based samplers.

An ideal initial point for sampling from the denoising pos-
terior p(x|x̃(i−1)) would be the mean of the denoising dis-
tribution, defined as µ(x̃) ≡

∫
xp(x|x̃) dx. By Tweedie’s

lemma (Efron, 2011; Robbins, 1992), the mean can be ex-
pressed as a function of the score∇x̃ log p(x̃):

µ(x̃(i−1)) =
x̃(i−1) + σ2∇x̃ log p(x̃

(i−1))

α
. (13)

Figure 2(b) demonstrates that the mean function µ(x̃(i−1))
provides an initial point positioned in the middle of the
four modes according to their weights, slightly favoring the
mode with the largest weight. However, a challenge arises
since∇x̃ log p(x̃) is generally intractable (see Equation 9),
making it impractical to compute.

Alternatively, a straightforward approach is to initialize the
denoising sampler at the previous state x(i−1). However,
this strategy has a drawback: since x(i−1) is typically close
to one of the modes, the score-based sampler often remains
trapped in the vicinity of that mode, thereby hindering effec-
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(a) Effects of α (fix σ = 1). (b) Effects of σ (fix α = 1). (c) Effects of T in the VP schedule.

Figure 4. Effects of the hyperparameters α, σ in Gaussian convolution kernels and the number T of noise levels in the variance-preserving
(VP) noise scheduling. The y-axis in all three plots is the MMD between true samples and generated samples generated by DiGS with
varying hyperparameters. The x-axis is α in (a), σ in (b), and T in (c). Experimental setups can be found in Appendices C.2 and C.3.

tive exploration of the entire distribution. Another heuristic
initialization strategy is to use x̃(i−1)/α, where the scaling
factor α reflects the scale relationship between x and x̃, as
suggested by the mean function in Equation 13. This ap-
proach exhibits a uniform preference for a random mode (for
instance, the upper-left mode in Figure 2(b)) and ignores
the underlying weighting between modes, resulting in a
bias in representing the true weights of different modes and
consequently diminishing the overall quality of the samples.

To avoid potential bias, rather than aiming to draw an ex-
act sample from p(x|x̃(i−1)) at each iteration we employ a
Metropolis-within-Gibbs scheme, where a finite number of
score-based MCMC updates are applied in each sweep. We
propose to facilitate mixing across modes by sampling an
initialization position x′init for the subsequent score-based
sampling steps from an additional MCMC transition kernel.
Specifically, to initialize denoising sampling for the poste-
rior p(x|x̃(i−1)), we employ a proposal x′init ∼ q(x|x̃(i−1))
which is centered at the (scaled) noisy sample x̃(i−1)/α:

q(x|x̃(i−1)) = N (x|x̃(i−1)/α, (σ/α)2I), (14)

where the mean and the variance are inspired by the mean
function µ(x̃(i−1)). Note that this proposal only depends on
the noisy sample x̃(i−1) and is independent of the previous
state x(i−1). We use the MH algorithm to calculate the
acceptance rate for this proposal:

ainit = min

(
1,
p(x′init|x̃(i−1))q(x(i−1)|x̃(i−1))

p(x(i−1)|x̃(i−1))q(x′init|x̃(i−1))

)
, (15)

where the denoising posterior ratio is tractable since

p(x′init|x̃(i−1)))

p(x(i−1)|x̃(i−1))
=

e−E(x′
init)p(x̃(i−1)|x′init)

e−E(x(i−1))p(x̃(i−1)|x(i−1))
. (16)

If the proposal is accepted, we will initialize the denois-
ing sampling process with the updated value x′init, rather
than the previous state x(i−1). Algorithm 1 summarizes the
proposed Diffusion Gibbs Sampling (DiGS) procedure.

To demonstrate the benefits of the additional MCMC kernel
updating the initialization, we run DiGS with three differ-
ent initializations – the previous state x(i−1), a heuristic

Algorithm 1 Diffusive Gibbs Sampling (DiGS)

1: Input: Target energy E(x); Gaussian convolution hy-
perparameters α, σ; score-based denoising sampler S;
the number of denoising sampling steps L; the number
of Gibbs sampling sweeps K; initial data sample x(0).

2: for i← 1 to K do
3: Draw x̃(i−1) ∼ p(x̃|x(i−1)) using Equation 10.
4: Propose x′init ∼ q(x|x̃(i−1)) as initialization for the

denoising process from the proposal in Equation 14.
5: Accept x(i)init ← x′init with probability ainit in Equa-

tion 15; otherwise set x(i)init ← x(i−1).
6: Draw x(i) ∼ p(x|x̃(i−1)) by running the score-based

sampler S for L steps from the initial point x(i)init.
7: end for
8: Output: x(K)

re-initialization at x̃(i−1)/α, and our MH transition strategy
– on an MoG target with different component weights. Fig-
ure 3 provides a visual comparison of the samples obtained
from these initializations, showing that only the MH transi-
tion scheme captures all modes with the correct weightings.
For evaluation, we employ the Maximum Mean Discrepancy
(MMD) (Gretton et al., 2012) throughout all the experiments.
The results are shown in Table 1, which demonstrates that
the MH strategy outperforms the other two in capturing
all modes and accurately representing the true weightings.
Detailed experimental setup can be found in Appendix C.1.

2.2. Choosing the Gaussian Convolution Kernels

The performance of DiGS can be influenced by the hyperpa-
rameters α, σ in the Gaussian convolution kernel. Intuitively,
for a given fixed α, a large σ will enhance the exploration
capability of the sampler. However, this also makes the
denoising posterior p(x|x̃) closer to p(x) as illustrated in
Equation 11, thereby elevating the complexity of denoising
sampling. Similarly, with a fixed σ, reducing α will bring
the modes closer but will also make ∇x log p(x|x̃) close to
∇x log p(x) as shown in Equation 12, making the denoising
sampling challenging. To illustrate the effects of hyperpa-
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rameters, we apply DiGS to the MoG problem described in
Figure 1 with varying values of α, σ and show the results
in Figures 4(a) and 4(b), respectively. This demonstrates
that within a specific range of α and σ values, DiGS con-
sistently achieves optimal performance indicated by almost
zero MMD. However, the quality of samples degrades when
hyperparameters deviate beyond certain thresholds.

Although these results suggest that DiGS is robust to varia-
tions in hyperparameters within a certain range, selecting
the appropriate parameter range for a specific target problem
remains crucial. The optimal range often depends on the
support or structure of the target density, which is typically
unknown in practice. In the next section, we introduce a
multi-level Gaussian convolution schedule to mitigate the
need for precise hyperparameter selection.

2.3. Multi-Level Noise Scheduling

Drawing inspiration from the noise scheduling technique
used in diffusion models (Ho et al., 2020; Song & Er-
mon, 2019; Song et al., 2021; Gao et al., 2018), we
propose to use a sequence of Gaussian convolution ker-
nels with 0<αT< · · ·<α1<1 and the corresponding vari-
ance σ2

t = 1 − α2
t in each Gaussian convolution ker-

nel pt(x̃t|x) = N (x̃|αtx, σ
2
t I). This approach is com-

monly known as the variance-preserving (VP) schedule,
where pt(x̃) =

∫
pt(x̃t|x)p(x) dx and p0(x̃) ≡ p(x).

As αT → 0, it follows that pT (x̃T |x) → N (0, I) and
pT (x̃T )→ N (0, I), which is independent of the character-
istics of the initial distribution. We follow the common sam-
pling procedure in the score-based diffusion model litera-
ture (Song & Ermon, 2019; 2020) and propose the following
sampling procedure: for each t from T to 1, we run DiGS
to generate a sample, which is used as an initial point in
the subsequent time step t−1. For a given number of noise
levels T , we apply a simple linear scheduling scheme to de-
termine the intermediate αt, σt values. Specifically, given a
α1 and αT , we can determine αt by αt = αT +(T − t)∆α,
where ∆α = (α1 − αT )/(T − 1) and σt =

√
1− αt.

Despite the similarity in noise scheduling to diffusion mod-
els, the fundamental sampling mechanism in DiGS is dif-
ferent. In diffusion models, the sampling process requires
a progression from time step T to 0 to yield valid samples.
However, DiGS produces a valid sample at any timestep
t in principle. This property allows us to set αT > 0 and
α1 < 1, thereby enhancing the efficiency of DiGS without
the necessity to align with the asymptotic distributions. To
illustrate the effect of the number of noise levels T , we im-
plement the VP schedule with a linear noise scheme. We
set αT = 0.1, α1 = 0.9 and vary T from 2 to 5. We test
this multi-level DiGS on the MoG problem described in Fig-
ure 1. Figure 4(c) shows that an optimal sampler is achieved
with T > 2 for this problem, circumventing the need for

Figure 5. Illustration of a multi-modal target distribution p(x), tem-
pered distribution pβ(x), and convolved distribution p(x̃).

manually selecting Gaussian convolution hyperparameters.

3. Comparison to Related Methods
In this section, we explore the relationship between DiGS
and related methods, complementing this with empirical
comparisons to highlight their distinct characteristics.

3.1. Tempering-Based Sampling

Tempering-based sampling is a state-of-the-art method
for multi-modal target distributions, which samples from
smoothed versions of the target distribution and exchanges
samples with the original target once in a while. A tempered
target distribution is defined as

pβ(x) ∝ p(x)β ∝ exp(−βE(x)), (17)

where β ≡ 1/τ < 1 is the inverse temperature. As τ →∞,
the tempered target pβ→0(x) converges to a flat distribution,
which encourages transitions among different modes. Tem-
pering is a key building block to develop state-of-the-art
multi-modal sampling methods such as parallel tempering
(PT) (Swendsen & Wang, 1986; Geyer & Thompson, 1995)
and annealed importance sampling (AIS) (Neal, 2001).

Tempering-based sampling makes transitions between dis-
tant modes easier. However, tempering is unable to bridge
disconnected modes even with a large temperature as it does
not alter the support of a distribution, since p(x)β = 0
wherever p(x) = 0. Moreover, Figure 5 shows that the
tempering-based method is inefficient in connecting modes
even when they are not completely disconnected but far
away. Appendix B gives an analytical example, showing the
log-density of a point between two modes could approach
−∞ in the tempered distribution pβ(x), whereas the log-
density of that point in the convolved distribution p(x̃) is
lower bounded, regardless of the shape of the target p(x).

To empirically compare the mode-bridging property of PT
and DiGS, we conduct experiments on an extreme problem,
“Mixture of Deltas”, which is an MoG with extremely small
variance in each Gaussian. Figure 6 shows the comparison
of the samples from these two methods. We find that PT is
unable to escape the central mode in this extreme setting
even with a large temperature τ . On the other hand, DiGS
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(a) True Samples (b) PT (c) DiGS

Figure 6. Comparison between parallel tempering (PT) and DiGS
on a “Mixture of Deltas” problem in 2D. PT consists of 5 tempera-
tures, while DiGS uses one noise level. Each sampler is initialized
at the origin and generates 1,000 samples. Detailed experimential
setup can be found in Appendix C.4.

manages to recover all 9 modes, demonstrating its superior-
ity over PT in terms of mode exploration and coverage.

3.2. Score-Based Diffusion Model

The convolution technique plays a key role in score-based
diffusion models (Song & Ermon, 2019; Song et al., 2021;
Song & Ermon, 2020; Ho et al., 2020; Sohl-Dickstein et al.,
2015; Gao et al., 2020). These models employ a series of
convolutions (indexed by t) to form a distribution sequence
from p(x̃0) ≡ p(x) to p(x̃T ). At each time step t, the
score function at time∇x̃t log p(x̃t) is learned from samples
x1, · · · , xN ∼ p(x) using denoising score matching (Vin-
cent, 2011). To sample from p(x), ULA and Euler discretiza-
tion are typically applied in reverse (t = T → 0), using
samples from each time step t as the initial point at time
t−1. This scheme has shown state-of-the-art generation
quality for complex data like images. However, unlike score-
based/diffusion generative models where ∇x̃ log p(x̃) is
learned directly from samples, our setting only assumes ac-
cess to an energy function E(x), making the noisy marginal
score ∇x̃ log p(x̃) intractable, as shown in Equation 9.

Zhang et al. (2023a) proposes a pseudo-Gibbs sampler
to sample from the joint p(x, x̃) = p(x)p(x̃|x) where
p(x̃|x) = N (x̃|αx, σ2I) and p(x|x̃) is approximated by
a full-covariance Gaussian. This approach also requires
training data to estimate the score function ∇x̃ log p(x̃),
which is different from our problem setting.

3.3. Proximal MCMC

The proposed DiGS also belong to the proximal MCMC
family, as referenced in Chen et al. (2022); Lee et al. (2021),
where Gibbs sampling is conducted between the Gaussian
convolution distribution p(x̃|x) and the denoising distri-
bution p(x|x̃). We highlight several significant improve-
ments over the proximal MCMC method discussed in Chen
et al. (2022). First, we employ a score-based sampler,
such as ULA or HMC, instead of the rejection sampling

Figure 7. Computational cost comparison between DiGS and
RDMC. The x-axis is the number of energy evaluations (×106) and
the y-axis is the MMD between true and generated samples. We
use DiGS with a single noise level (α = 1, σ = 1) and run Gibbs
sampling for 1-10 sweeps, represented by the 10 blue scatters. The
RDMC is experimented with T ∈ {1, 2, 3, 4}, represented by the
four orange points in the plot. Detailed experimental setup can be
found in Appendix C.5.

in the denoising step, which helps the method scale to
higher-dimensional distributions. Second, we utilize an MH
scheme to initialize the denoising sampling, demonstrat-
ing its importance in achieving correct density allocation
in multi-modal situations, as demonstrated in Section 2.1.
Third, we emphasize the importance of selecting the Gaus-
sian convolution kernel in Section 2.3 and extend DiGS to a
multi-noise setting, eliminating the need to choose Gaussian
convolution hyperparameters. These improvements make
the method applicable to practical problems.

Entropy-MCMC (Li & Zhang, 2023) is designed to sample
from the flat regions within the posterior of the Bayesian
neural network p(θ|D), where D represents the dataset.
Specifically, the approach begins by defining a surrogate
distribution using Gaussian convolution:

p(θa|D) =
∫
p(θa|θ)p(θ|D) dθ, (18)

where p(θa|θ) ∝ exp
(
− 1

2η∥θa − θ∥
2
2

)
is a Gaussian ker-

nel aimed at smoothing out the sharp regions in the posterior.
Subsequently, SGLD is applied to sample within the joint
space of (θ, θa). It is crucial to highlight that, while this
method is aimed at optimization to seek flat minima in
the target distribution p(θ|D), similar to the approaches de-
scribed in Chaudhari et al. (2019); Staines & Barber (2012),
it is not intended and cannot provide exact samples from
the target distribution p(θ|D). In contrast, DiGS is designed
as a valid MCMC sampler that is specifically designed to
identify all modes (including both sharp and flat modes)
and their corresponding density allocations in the target
distribution, thus pursuing a distinct objective.

3.4. Reverse Diffusion Monte Carlo

To emulate a diffusion model sampling process with access
to the unnormalized density of the target only, Huang et al.
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(a) True Samples (b) MALA (c) HMC (d) PT (e) DiGS

Figure 8. Visualization of 104 samples for MoG-40 generated by each sampler. All samplers are initialized at the origin.

Table 2. Sample quality on MoG-40. MMD is computed between
true samples and samples generated by each sampler. MAE is
computed between the true and estimated expectation values of a
quadratic function under the target and is expressed as the percent-
age of the true expectation value.
Sampler MMD MAE (%) #energy eval.

MALA 1.73± 0.12 93.3± 0.73 1.0× 107

HMC 1.70± 0.09 92.8± 0.34 1.0× 107

PT (1.89± 0.44)× 10−2 7.32± 1.85 1.0× 107

DiGS (4.57± 1.10)× 10−4 0.75± 0.19 1.0× 107

(2023) introduces Reverse Diffusion Monte Carlo (RDMC),
which approximates the score function in the noisy space at
each time t. Specifically, by rewriting the Tweedie’s lemma
in Equation 13, the noisy score can be expressed as

∇xt
log p(xt) =

αµ(xt)− xt
σ2
t

, (19)

where the denoising posterior mean µ(xt) =
∫
xp(x|xt) ≈

1
K

∑K
k=1 x

(t,k)
0 is approximated by the Monte Carlo method,

with samples x(t,1)0 , · · · , x(t,K)
0 obtained by running a score-

based sampler such as ULA on the posterior p(x0|xt) ∝
exp(−E(x0)− ∥xt − αtx0∥2/2σ2

t ). Therefore, in RDMC,
obtaining a single sample xt ∼ p(xt) via ULA at each time
step t ∈ [1, T ] involves an intermediate step of generating
K posterior samples via another ULA, leading to a nested
MCMC sampling procedure that imposes substantial com-
putational demands. In contrast, DiGS does not have such
hierarchy since it requires only one MCMC chain during
denoising sampling in each Gibbs sweep, significantly re-
ducing the computational burden. Figure 7 compares the
computational costs of these two methods when applied to
MoG target as shown in Figure 1, demonstrating that DiGS
can achieve the same accuracy as RDMC with 10× fewer
energy evaluations. The efficiency of DiGS is particularly vi-
tal in applications such as molecular dynamics (Section 4.3),
where even a single energy evaluation is costly.

3.5. Auxiliary Variable MCMC

DiGS belongs to the broader auxiliary variable MCMC
family. This family encompasses various notable methods

such as the Swendsen-Wang algorithm (Swendsen & Wang,
1987), slice sampling (Neal, 2003), Hamiltonian Monte
Carlo (HMC) (Duane et al., 1987; Neal et al., 2011), and aux-
iliary variational MCMC (Habib & Barber, 2018; Agakov
& Barber, 2004), see Barber (2012) for a detailed introduc-
tion. Among these, HMC bears the closest resemblance to
DiGS. We delve into the similarities and differences in the
following discussion.

As introduced in Section 1.1, HMC generates samples from
the joint distribution p(x, v) = p(x)p(v) where the v is
the auxiliary variable that represents the momentum. The
momentum is usually distributed as a Gaussian p(v) =
N (v|0, σ2

vI) that is independent of x. However, there are
other variants of HMC where the momentum auxiliary vari-
able v depends on x. For example, in Riemannian Manifold
HMC (Girolami & Calderhead, 2011), the momentum is
distributed as p(v|x) = N (v|0,Σv(x)), where Σv(x) is the
Fisher information matrix that captures the local curvature
of the energy around x. The auxiliary variable in DiGS
is the convolved variable x̃, which is a noisy version of x,
given by p(x̃|x) = N (x̃|αx, σ2I). Notably, when α = 0,
it follows that p(x̃|x) = p(x̃) = N (x̃|0, σ2I), and the joint
distribution p(x, x̃) = p(x)p(x̃) in DiGS is identical to
p(x, v) in the classic HMC formulation. Despite this, DiGS
employs Gibbs sampling which alternately samples from
the two conditionals p(x̃|x) and p(x|x̃), whereas HMC sim-
ulates the Hamiltonian equations as discussed in Section 1.1,
interleaved with samples from p(v).

4. Empirical Evaluation
We evaluate DiGS on three complex multi-modal sampling
tasks across various domains: a mixture of 40 Gaussians,
Bayesian neural network, and molecular dynamics1. For
DiGS, we employ MALA with the MH initialization strat-
egy for denoising sampling We compare DiGS with three
baselines: MALA, HMC and PT. In all experiments, the
step sizes of MALA and HMC are tuned via trial-and-error
so that the acceptance rates are close to 0.574 and 0.65, re-
spectively. We choose not to compare with RDMC, since

1The code of our experiments can be found in https://
github.com/Wenlin-Chen/DiGS.
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it is computationally intractable on these complex tasks as
demonstrated in Section 3.4.

4.1. Mixture of 40 Gaussians

We first consider a synthetic problem from Midgley et al.
(2023), which is a 2D MoG with 40 mixture components.
This is a relatively challenging multi-modal sampling task,
yet it allows for visual examination of the mode-coverage
property for each method. In this experiment, each method
is initialized at the origin and generates 104 samples for eval-
uation. MALA runs 1,000 Langevin steps per sample. HMC
runs 1,000 leapfrog steps per sample. PT consists of 5 chains
with temperatures τ = {1.0, 5.62, 31.62, 177.83, 1000.0},
where each chain is constructed by an HMC sampler with
200 leapfrog steps per sample. DiGS uses T = 1 noise level
with α = 0.1 and σ2 = 1 − α2, 200 Gibbs sweeps, and 5
MALA denoising sampling steps per Gibbs sweep.

Figure 8 shows a visual comparison for 104 samples gener-
ated by each method. We can see that MALA and HMC fail
to explore the modes that are far away from the origin. PT
covers all 40 modes but produces significantly less samples
for the modes on the top-right and bottom-right corners.
DiGS manages to cover all modes with the right amount of
samples in each mode. Table 2 shows the the Maximum
Mean Discrepancy (MMD) (Gretton et al., 2012) (computed
with 5 kernels with bandwidths {2−2, 2−1, 20, 21, 22}) be-
tween the true samples and samples generated by each sam-
pler and the Mean Absolute Error (MAE) between the true
and estimated expectations of a quadratic function under
the MoG-40 target. This demonstrates that our method
significantly outperforms all baselines on this problem.

4.2. Bayesian Neural Networks

The posterior density of the parameters in a Bayesian neu-
ral network (BNN) is known to be complex and multi-
modal (Barber & Bishop, 1998; Hernández-Lobato &
Adams, 2015; Louizos & Welling, 2017; Izmailov et al.,
2018). For a given training dataset Dtrain = {(xi, yi)}Ni=1,
the posterior density can be expressed as p(θ|Dtrain) ∝
p(θ)

∏
i p(yi|xi, θ), where p(θ) is the prior density over

the parameters and p(y|x, θ) is the likelihood given by the
NN fθ(x) for a data point (x, y). We consider a three-
layer neural network with ReLU activation, input-layer size
dx = 20, hidden-layer size dh = 25, and output-layer size
dy = 1. This results in d = 550 parameters in total. We use
a Gaussian prior p(θ) = N (θ|0, σ2

pI) with σp = 1/
√
dfan-in

and a Gaussian likelihood p(y|x, θ) = N (y|fθ(x), σ2
n)

with σn = 0.1. We sample the ground-truth parameters
θ∗ ∼ p(θ) from the prior and use θ∗ to generate N = 500
training points and 500 test points for evaluation.

In this experiment, all methods are initialized at the same
random sample from the prior and generate 103 samples

Table 3. Average test predictive NLL for the BNN estimated by
103 samples generated by each sampler.

Sampler NLL #energy evaluations

MAP 0.548± 0.066 5.0× 106

MALA 0.335± 0.014 5.0× 106

HMC 0.317± 0.012 5.0× 106

PT 0.261± 0.005 5.0× 106

DiGS 0.199± 0.002 5.0× 106

from the posterior p(θ|Dtrain) for evaluation. MAP runs
5 × 106 full-batch gradient descent steps. MALA runs
5,000 Langevin steps per sample. HMC runs 5,000 leapfrog
steps per sample. PT consists of 5 chains with temperatures
τ = {1.0, 5.62, 31.62, 177.83, 1000.0}, where each chain
is constructed by an HMC sampler with 1,000 leapfrog steps
per sample. DiGS uses the VP schedule with T = 5 noise
levels, ranging from αT = 0.1 to α1 = 0.9, each with
100 Gibbs sweeps and 10 MALA denoising sampling steps
per Gibbs sweep. Table 3 reports the average predictive
negative log-likelihood (NLL) for each method on the test
data, which shows that DiGS significantly outperforms other
baselines. We speculate that the performance gain comes
from the fact that DiGS captures a broader range of modes.

4.3. Molecular Dynamics

Figure 9. Alanine dipeptide
(Midgley et al., 2023)

Finally, we consider a real-
world problem of sampling
equilibrium molecular config-
urations from the Boltzmann
distribution of the 22-atom
molecule alanine dipeptide in
an implicit solvent at temper-
ature 300K, where the poten-
tial energy E(x) is a function
of 3D atomic coordinates ob-
tained by simulating physical laws (Wu et al., 2020; Dibak
et al., 2022; Campbell et al., 2021; Stimper et al., 2022;
Midgley et al., 2023). This is a very challenging problem
since E(x) is highly multi-modal with many high energy
barriers and is also costly to evaluate. Following the setup
in Midgley et al. (2023), we represent the molecule with
d = 60 roto-translation invariant internal coordinates.

In this experiment, each method is initialized at the min-
imum energy configuration as in Midgley et al. (2023)
and generates 106 samples of configurations for evaluation.
MALA runs 1,000 Langevin steps per sample. HMC runs
1,000 leapfrog steps per sample. DiGS uses the VP schedule
with T = 2 noise levels (α2 = 0.1 and α1 = 0.9), each with
100 Gibbs sweeps and 5 MALA denoising sampling steps
per Gibbs sweep. Note that PT is the gold-standard method
in molecular dynamics (MD) simulation, which serves as
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Table 4. KL divergences for the Ramachandran plots and the marginals of the dihedral angles ϕ and ψ in alanine dipeptide.
Sampler p(ϕ) p(ψ) Ramachandran #energy evaluations #samples

MALA 1.9×10−3 5.3×10−4 1.1×10−2 1.0×109 106

HMC 4.0×10−4 3.1×10−4 7.1×10−3 1.0×109 106

DiGS 2.3×10−4 1.2×10−4 4.3×10−3 1.0×109 106

MD PT (Midgley et al., 2023) 2.5×10−4 1.4×10−4 5.3×10−3 2.3×1010 106

Ground-truth (Midgley et al., 2023) – – – 2.3×1011 107

(a) Ground-truth (b) DiGS (106 samples)

Figure 10. Ramachandran plots for alanine dipeptide.

the ground-truth. The PT samples are taken from Midgley
et al. (2023), which is generated using 21 chains starting at
temperature 300K and increasing the temperature by 50K
for each subsequent chain, where each chain is constructed
by an HMC sampler with 1,000 leapfrog steps per sam-
ple. We follow Midgley et al. (2023) and treat 107 PT
samples as the ground-truth. In addition, we consider a
baseline of 106 PT samples as a reference. The quality of
the sampled configurations is assessed by the Ramachan-
dran plot (Ramachandran et al., 1963), which can be used
to analyze how the protein folds locally. A Ramachandran
plot is a 2D histogram for the two dihedral angles ϕ, ψ in
the bonds connecting an amino acid to the protein backbone
as shown in Figure 9. Table 4 shows the KL divergences
for the Ramachandran plots and the marginals of ϕ, ψ be-
tween the ground-truth samples and samples generated by
each sampler. We can see that DiGS significantly outper-
forms MALA and HMC with the same number of energy
evaluations. DiGS also outperforms the gold-standard MD
simulation method PT with 23× less energy evaluations.
Figure 10 shows a visual comparison between the ground-
truth and DiGS Ramachandran plots, confirming that DiGS
captures all modes with the correct weightings.

5. Conclusion
Diffusive Gibbs Sampler offers significant improvements in
sampling multi-modal distributions, surpassing traditional
methods in both efficiency and accuracy. Its applicability
across various fields (e.g., Bayesian inference and molecular
dynamics) showcases the potential to facilitate sampling
complex distributions in numerous scientific applications.
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A. Proof of Theorem 2.1
Proof. A sufficient condition for irreducibility and recurrency of a Markov chain is that the joint distribution p(x, x̃) should
satisfy the positivity condition (Robert et al., 1999; Roberts & Smith, 1994), which requires p(x′, x̃′) > 0 for all x′, x̃′ such
that p(x′) > 0 and p̃(x̃′) > 0, where p̃(x̃′) =

∫
p(x̃′|x)p(x) dx. This requirement is satisfied in the DiGS. This is because

p(x, x̃) = p(x̃|x)p(x), where the Gaussian convolution kernel p(x̃|x) has full support in Rd. Consequently, if p(x′) > 0,
then it follows that p(x̃′) > 0 and p(x′, x̃′) > 0.

B. An Analytical Example of Tempering v.s. Convolution
Although tempering-based sampling can alleviate the issue of multi-modal sampling in certain contexts, they still struggle in
situations where the modes are less connected or completely isolated. Consider a toy example of a mixture of two Gaussians
in 1D, given by p(x) = 1

2N (x|µ, σ2
g) +

1
2N (x| − µ, σ2

g) where both Gaussian components have the same variance σ2
g and

symmetric means positioned at µ,−µ. A point of interest is x = 0, which lies in the low-density region between the two
modes and acts as a barrier point, hindering the state transition from one mode to another. In this example, the tempered
log-density has a closed-form expression up to some constant Cβ :

log pβ(x = 0) = β
(
−µ2/2σ2

g − log σg
)
+ Cβ . (20)

For any given inverse temperature β and position µ, as σg → 0, we have log pβ(x = 0)→ −∞ and thus pβ(x = 0)→ 0.
This “Mixture of Deltas” example shows that tempering methods do not effectively overcome the low-density barrier in such
situations. Furthermore, if we consider scenarios where each component of the mixture distribution is entirely disconnected,
the tempered density in these regions remains zero, as tempering does not alter the support of a distribution.

In contrast, we define the convolved distribution p(x̃) =
∫
p(x̃|x)p(x) dx for the same target p(x) with a convolution kernel

p(x̃|x) = N (x̃|x, σ2). For any given µ and σg , without loss of generality, we choose σ ≥ σg/δ with a small constant δ > 0.
This leads to a lower bound:

log p(x̃ = 0) = − µ2

2(σ2
g + σ2)

− 1

2
log(2π(σ2

g + σ2))

≥ − µ2

2σ2
− 1

2
log(2πσ2(1 + δ2)), (21)

illustrating that the convolved log-density at x̃ = 0 is lower-bounded for any σ > 0 as σg → 0, since the lower bound
of log p(x̃ = 0) is independent of σg and remains finite. This approach effectively guarantees the maintenance of a
non-negligible density within the bridges connecting different modes of distribution. Figure 5 presents a one-dimensional
comparison between the tempering and convolution methods. However, in cases where the standard deviation of the Mixture
of Gaussians (MoG) is exceptionally small, the efficacy of tempering diminishes significantly. In such instances, even with a
large temperature T , tempering fails to connect the modes. Conversely, the convolution method continues to effectively
bridge the modes, even with a relatively small σ. This comparison underscores the convolution method’s robustness in
handling scenarios with disconnected modes, a situation that also mirrors challenges often encountered in high-dimensional
cases, whereas the tempering method struggles.

C. Experimental Details
In all experiments, the step sizes of MALA and HMC are tuned via trial-and-error so that the acceptance rates are close to
optimal values 0.574 and 0.65, respectively.

C.1. Comparison of Initialization Strategies for the Denoising Sampling Step

For the comparison of three initialization strategies for the denoising sampling step in Figure 3 and Table 1 in Section 2.1,
we run DiGS with α = 1, σ = 1 for 200 Gibbs sweeps on an MoG with unbalanced weights. The denoising sampling step
begins with an initialization using the Metropolis-Hastings (MH) algorithm, followed by 50 MALA steps with a step size of
1×10−3. For evaluation, we employ the Maximum Mean Discrepancy (MMD) (Gretton et al., 2012) that utilizes 5 kernels
with bandwidths {2−2, 2−1, 20, 21, 22}.
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C.2. Comparison of Gaussian Convolution Hyperparameters

For the convolution parameter comparison in Section 2.2, we use DiGS to generate 1,000 samples. For each sample, we
execute 1,000 Gibbs sweeps. The denoising sampling step begins with an initialization using the Metropolis-Hastings
(MH) algorithm, followed by 10 MALA steps. The step size for MALA is set at 1 × 10−3. We set σ = 1.0 and vary α
across {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, 5.0} for the experiment shown in Figure 4(a). Similarly,
we set α = 1.0 and vary σ across {0.1, 0.3, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 10, 15, 20} for the experiment shown in Figure 4(b).
For evaluation, we employ the Maximum Mean Discrepancy (MMD) (Gretton et al., 2012) that utilizes 5 kernels with
bandwidths {2−2, 2−1, 20, 21, 22}.

C.3. Multi-Level Noise

For the multi-level noise experiment with the VP schedule in Section 2.3, we define αt = αT + (T − t)∆α, where
∆α = (α1 − αT )/(T − 1) and σt =

√
1− αt. We set α1 = 0.9 and αT = 0.1, and experiment with T ∈ {2, 3, 4, 5} for

the comparison shown in Figure 4(c). For evaluation, we employ the Maximum Mean Discrepancy (MMD) (Gretton et al.,
2012) that utilizes 5 kernels with bandwidths {2−2, 2−1, 20, 21, 22}.

C.4. Comparison with Parallel Tempering

For comparison with parallel tempering on the “Mixture of Delta” problem in Figure 6 in Section 3.1, each sampler
is initialized at the origin and generates 1,000 samples. DiGS employs a single noise level Gaussian convolution with
parameters α = 1 and σ = 1, complemented by 5,000 Gibbs sweeps. Each Gibbs sweep begins with MH (Metropolis-
Hastings) initialization, followed by 10 steps of MALA with a step size of 1×10−3. PT consists of 5 chains with temperatures
τ={1.0, 5.62, 31.62, 177.83, 1000.0}, where each chain is constructed by an HMC sampler with 1,000 leapfrog steps per
sample and a step size of 1×10−2.

C.5. Comparison with RDMC

For the comparison with Reverse Diffusion Monte Carlo (RDMC) in Figure 7 in Section 3.4, we follow the original setting
discussed in the paper (Huang et al., 2023) and use ULA for generating samples for the posterior distribution. The score
function of the reverse distribution using K = 5 to construct the score approximation

∇xt
log p(xt) ≈

α

K

K∑
k=1

(
x
(t,k)
0 − xt

)
/σ2

t , (22)

where x(t,k)0 ∼ p(x0|xt) denotes the samples drawn using ULA with LULA = 5 steps and a step size of 1×10−2. These
samples are initialized through importance sampling (IS) with Sis = 100 samples. The discretization step size η is set
to Γ/T , with the scaling factor at = e−(Γ−t·η) and the standard deviation σt =

√
1− α2

t . Following the procedure
in (Huang et al., 2023), we further apply ULA for additional LULA steps after RDMC. The parameter Γ is fixed at 0.1
for our experiments, and we explore different values of T ∈ {1, 2, 3, 4}, necessitating TK(LULA + Sis) + LULA energy
evaluations to generate a single sample.

For DiGS, we use DiGS with one noise level Gaussian convolution with parameter α = 1, σ = 1. For sampling from
the denoising distribution, we use the MH initialization followed by the ULA sampling with LULA = 5 steps and a step
size of 1×10−2. This MH+ULA scheme ensures a fair comparison to the IS+ULA scheme used in the RDMC. We vary
Sgibbs ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} Gibbs sweeps to generate a sample, which takes Sgibbs(LULA + 2) energy evaluations
in total, where the constant 2 accounts for the two energy evaluations required by MH. For both DiGS and RDMC, a total of
1,000 samples are generated for comparison.

For evaluation, we employ the Maximum Mean Discrepancy (MMD) (Gretton et al., 2012) that utilizes 5 kernels with
bandwidths {2−2, 2−1, 20, 21, 22}.

C.6. Mixture of 40 Gaussians

For the MoG-40 experiment in Section 4.1, each method is initialized at the origin and generates 104 samples for evaluation.
MALA runs 1,000 Langevin steps per sample with a step size of 1 × 10−1. HMC runs 1,000 leapfrog steps per sample
with a step size of 1× 10−1. PT consists of 5 chains with temperatures τ = {1.0, 5.62, 31.62, 177.83, 1000.0}, where each
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chain is constructed by an HMC sampler with 200 leapfrog steps per sample with a step size of 1× 10−1. DiGS uses T = 1
noise level with α = 0.1 and σ2 = 1− α2, 200 Gibbs sweeps, and 5 MALA denoising sampling steps per Gibbs sweep
with a step size of 1× 10−1.

C.7. Bayesian Neural Networks

For the BNN experiment in Section 4.2, all methods are initialized at the same random sample from the prior and generate
103 samples from the posterior p(θ|Dtrain) for evaluation. MAP runs 5× 106 full-batch gradient descent steps with a step
size of 3× 10−2. MALA runs 5,000 Langevin steps per sample with a step size of 1× 10−4. HMC runs 5,000 leapfrog steps
per sample with a step size of 5× 10−4. PT consists of 5 chains with temperatures τ = {1.0, 5.62, 31.62, 177.83, 1000.0},
where each chain is constructed by an HMC sampler with 1,000 leapfrog steps per sample with a step size of 5 × 10−4.
DiGS uses the VP schedule with T = 5 noise levels, ranging from αT = 0.1 to α1 = 0.9, each with 100 Gibbs sweeps and
10 MALA denoising sampling steps per Gibbs sweep with a step size of 1× 10−4.

C.8. Molecular Dynamics

For the molecular dynamics experiment in Section 4.3, each method is initialized at the minimum energy configuration as
in Midgley et al. (2023) and generates 106 samples of configurations for evaluation. MALA runs 1,000 Langevin steps per
sample with a step size of 1× 10−4. HMC runs 1,000 leapfrog steps per sample with a step size of 1× 10−3. DiGS uses
the VP schedule with T = 2 noise levels (α2 = 0.1 and α1 = 0.9), each with 100 Gibbs sweeps and 5 MALA denoising
sampling steps per Gibbs sweep with a step size of 1 × 10−4. Note that PT is the gold-standard method in molecular
dynamics (MD) simulation, which serves as the ground-truth. The PT samples are taken from Midgley et al. (2023), which
is generated using 21 chains starting at temperature 300K and increasing the temperature by 50K for each subsequent chain,
where each chain is constructed by an HMC sampler with 1,000 leapfrog steps per sample. We follow Midgley et al. (2023)
and treat 107 PT samples as the ground-truth. In addition, we consider a baseline of 106 PT samples as a reference.

D. Extra Experimental Results
Figure 11 shows the Ramachandran plots produced by all compared methods for the molecular dynamics experiment in
Section 4.3.
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(a) Dihedral angles ϕ, ψ in alanine dipeptide (b) MD (107 samples, 2.3×1011 energy evaluations)

(c) MALA (106 samples, 1.0×109 energy evaluations) (d) HMC (106 samples, 1.0×109 energy evaluations)

(e) PT (106 samples, 2.3×1010 energy evaluations) (f) DiGS (106 samples, 1.0×109 energy evaluations)

Figure 11. (a) Visualization of the dihedral angles ϕ and ψ in alanine dipeptide (Midgley et al., 2023). (b)-(d) Ramachandran plots for the
dihedral angles ϕ and ψ of alanine dipeptide. MD simulation (PT with 107 samples) serves as ground-truth.
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