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Abstract

This work examines the characteristic activation values of individual ReLU units in neural
networks. We refer to the set of input locations corresponding to such characteristic
activation values as the characteristic activation set of a ReLU unit. We draw an explicit
connection between the characteristic activation set and learned features in ReLU networks.
This connection leads to new insights into how various neural network normalization
techniques used in modern deep learning architectures regularize and stabilize stochastic
gradient optimization. Utilizing these insights, we propose geometric parameterization
for ReLU networks to improve feature learning, which decouples the radial and angular
parameters in the hyperspherical coordinate system. We empirically verify its usefulness with
less carefully chosen initialization schemes and larger learning rates. We report significant
improvements in optimization stability, convergence speed, and generalization performance
for various models on a variety of datasets, including the ResNet-50 network on ImageNet.

1 Introduction

In a neural network with standard parameterization (SP), each neuron applies an affine
transformation to its input x ∈ Rn followed by an element-wise nonlinear activation function
g:

z = g(wT x+b), (1)

where the affine transformation is parameterized by a weight vector w ∈ Rn and a bias scalar
b ∈ R. Rectified Linear Unit (ReLU) (Glorot et al., 2011) is arguably the most popular
activation function used in modern deep learning architectures, which has a cut-off point at
s = 0:

g(s) = ReLU(s) = max(0, s). (2)

The characteristic activation boundary/set of such a ReLU neuron refers to the set of input
locations with zero pre-activations, which, by definition, separates the active region from
the inactive region in the input space. Characteristic activation boundaries are the building
blocks for the decision boundaries of ReLU networks, which characterize the quality of the
learned features.

Based on the proposed characteristic activation analysis, this paper focuses on a geometric
interpretation of learned features in ReLU networks. This provides a theoretical justification
for how various neural network normalization techniques used in modern deep learning
architectures regularize and stabilize stochastic gradient optimization. Motivated by these
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insights, we propose a novel neural network parameterization technique that decouples the
radial and angular parameters in the hyperspherical coordinate system and thus smooths
the evolution of the characteristic activation boundaries in ReLU networks. We empirically
show that our new parameterization enables faster and more stable stochastic gradient
optimization and achieves better generalization performance even under less carefully chosen
initialization schemes and larger learning rates.

2 Background and Related Work

This section reviews neural network reparameterization and normalization techniques, paying
particular attention to weight normalization and batch normalization.

2.1 Weight Normalization

Weight normalization (WN) (Salimans and Kingma, 2016) is a simple weight reparame-
terization technique that decouples the length l and the direction v/∥v∥2 of the weight vector
w in a standard ReLU unit (1):

z = ReLU

(
l

(
v

∥v∥2

)T

x+b

)
. (3)

The idea behind WN is to make the length l and the direction v/∥v∥2 of the weight vector
independent of each other in the Cartesian coordinate system, which is effective in improving
the conditioning of the gradients of the parameters and speeding up the convergence of
optimization.

2.2 Batch Normalization

Batch normalization (BN) (Ioffe and Szegedy, 2015) is a widely-used neural network
normalization layer in modern deep learning architectures such as ResNet (He et al., 2016),
which is effective to accelerate and stabilize stochastic gradient optimization of neural
networks (Kohler et al., 2019). In ReLU networks, BN is often applied at the pre-activation
level in each layer:

z = ReLU(BN(wT x+b)). (4)

The BN layer standardizes the pre-activation using the empirical mean and covariance
estimated from the current mini-batch:

BN(wT x+b) = γ
wT x−Êx[w

T x]√
V̂arx[wT x+b]

+ β, (5)

where γ ∈ R and β ∈ R are two free parameters to be learned from data, which adjusts the
output of the BN layer as needed to increase its expressiveness.
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2.3 Connections between BN and WN

BN and WN are closely related to one another: assuming that the input x has zero means,
one can show that BN is also a kind of neural network parameterization:

BN(wT x+b) = γ
wT x√

V̂arx[wT x+b]
+ β = γ

wT x√
wTΣ̂w

+ β = γ

(
w

∥w∥Σ̃

)T

x+β, (6)

where the vector norm ∥w∥Σ̃ is calculated with respect to the empirical data covariance

matrix Σ̂ = V̂ar[x] estimated from the current mini-batch. This shows that BN is effectively
an adaptive, data-dependent parameterization of standard neurons (1) that decouples the
correlations in the input x. However, in practice, it is common to estimate only the diagonal
elements in the data covariance matrix Σ̂ and set all its off-diagonal elements to zero to
reduce the extra computation introduced by the BN layers. Under this formalism, WN can
be seen as a special case of BN where the covariance matrix Σ̂ is replaced by the identity
matrix I independent of the input x, since ∥·∥2 = ∥·∥I.

2.4 Other Normalization Methods

Instead of normalizing the batch dimension as in BN, layer normalization (Ba et al., 2016)
normalizes the feature dimension, which is preferred for small batches of high-dimensional
inputs. There are other normalization techniques designed for specific applications, e.g.,
instance normalization (Ulyanov et al., 2016) and group normalization (Wu and He, 2018)
are special cases of instance normalization designed for CNNs, and spectral normalization
(Miyato et al., 2018; Zhai et al., 2023) is specifically designed for GANs and transformers.

3 Characteristic Activation Value Analysis for ReLU Networks

This section formally defines the characteristic activation sets of individual neurons and
introduces a geometric connection between such sets and learned features in ReLU networks.
This geometric insight will help understand the stability of neural network optimization and
motivate a new neural network parameterization that is provably stable under stochastic
gradient optimization.

3.1 Characteristic Activation Sets for ReLU Units

Definition 1 The ReLU activation function (2) is active for positive arguments s > 0 and
inactive for negative arguments s < 0. For a neuron with ReLU activation, the characteristic
activation set B is defined by a set of input locations such that s = 0:

B = {x ∈ Rn : wT x+b = 0}. (7)

In other words, it forms a characteristic boundary B for each neuron, which is an (n− 1)-
dimensional hyperplane that separates the active and inactive regions of a ReLU unit in the
input space Rn.

3



Wenlin Chen and Hong Ge

Definition 2 We define a representative point ϕ that lies on the characteristic boundary B
as

ϕ = − bw

wTw
= − b

∥w∥2
w

∥w∥2
. (8)

We refer to the point ϕ as the spatial location of B and the vector that goes from the origin
to the point ϕ as the characteristic vector of B (i.e., shortest path between the origin and B).
The spatial location (or the characteristic vector) ϕ uniquely determines the characteristic
set/boundary.

3.2 ReLU Characteristic Activation Boundary in Hyperspherical Coordinate

In a high dimensional input space, most data points x live in a thin shell since the volume
of a high dimensional space concentrates near its surface (Blum et al., 2020). Intuitively,
we want the spatial locations ϕ of characteristic activation boundaries B to be close to the
thin shell where most data points lie, because this spatial affinity between the characteristic
activation set and data points will introduce non-linearity at suitable locations in the input
space to separate different inputs x by assigning them different activation values. This
motivates the use of the hyperspherical coordinate to represent the spatial locations of the
characteristic activation boundaries.

More concretely, we reparameterize the characteristic activation boundary in terms of its
characteristic radius λ ∈ R and angle θ = [θ1, · · · , θn−1]

T in the hyperspherical coordinate
system. Noticing that w/∥w∥2 is a unit vector, the radial-angular decomposition of the
characteristic vector is given by

ϕ(λ,θ) = −λu(θ), with the definition λ :=
b

∥w∥2
and u(θ) :=

w

∥w∥2
, (9)

where the direction of the unit vector u(θ) is determined by the characteristic angle θ:

u(θ) =



cos(θ1)
sin(θ1) cos(θ2)

sin(θ1) sin(θ2) cos(θ3)
...

sin(θ1) sin(θ2) sin(θ3) · · · sin(θn−2) cos(θn−1)
sin(θ1) sin(θ2) sin(θ3) · · · sin(θn−2) sin(θn−1)


∈ Sn−1, (10)

where Sn−1 := {x ∈ Rn : ∥x∥2 = 1} is the unit hypersphere in Rn. In the hyperspherical
coordinate system, the characteristic activation boundary can be expressed as

B(λ,θ) = {x ∈ Rn : u(θ)T x+λ = 0}. (11)

3.3 Geometric Interpretation of ReLU Characteristic Activation Set

The characteristic activation set B of a ReLU Unit forms a line in R2, as shown by the
brown solid line in Figure 1a. More generally, B forms an (n− 1)-dimensional hyperplane in
Rn. The spatial location/characteristic vector ϕ = −λu(θ) fully specifies the characteristic
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activation boundary B: it is perpendicular to B, and its endpoint lies on B. The angle
θ controls the direction of the characteristic activation boundary. The radius λ controls
the distance between the origin and the characteristic activation boundary. Geometrically
speaking, calculating the pre-activation of a ReLU unit for an input x is equivalent to
projecting x onto the unit vector u(θ) and then adding the radius λ to the signed norm of
the projected vector. From this perspective, it is clear the characteristic activation boundary
is a set of inputs whose projections over u(θ) have signed norm −λ. For this reason, we call
this radial-angular decomposition in the hyperspherical coordinate system the geometric
parameterization (GmP).

3.4 Perturbation Analysis of ReLU Characteristic Activation Boundary

One benefit of defining characteristic activation boundaries in the hyperspherical coordinate
system is that the radius λ and angle θ of the spatial location ϕ are disentangled. More
concretely, this means that small perturbations to the parameter λ and θ will only cause
small changes in the spatial location of the characteristic activation boundary. To illustrate
this, first, we consider a small perturbation ε (e.g., gradient noise during SGD) to the
weight w in the standard parameterization (SP). This perturbation results in a change in
the angular direction of the characteristic activation boundary by

⟨w,w+ ε⟩ = arccos

(
wT(w+ ε)

∥w∥2∥w+ ε∥2

)
, (12)

which can take arbitrary values in [0, π] even for a small perturbation ε. For example, we
could have ⟨w,w+ ε⟩ = π for ε = −(1 + ϵ)w, ∀ϵ > 0. This indicates that the characteristic
activation boundary is unstable in the sense that it is vulnerable to small perturbations if
the weight w has a small norm, which is the case during neural network training since large
weights would lead to overfitting and numerical instability (e.g., the widely-used weight
decay method explicitly regularizes ∥w∥2 to be close to zero). This has the implication
that even a small gradient noise could destabilize the evolution of characteristic boundaries
during stochastic gradient optimization. Such instability is a critical reason that prevents
practitioners from using larger learning rates (Goodfellow et al., 2016).

In contrast, our GmP in the hyperspherical coordinate system is much more stable
under perturbation: we show that the change in the angular direction ⟨u(θ),u(θ+ ε)⟩ of
the characteristic activation boundary B under perturbation ε is bounded by the magnitude
of perturbation ε.

Theorem 3 With a small perturbation ε := [ε1, · · · , εn−1]
T to the angular parameter θ, the

change in the angular direction u(θ) ∈ Sn−1 (n ≥ 2) of the weights under GmP is given by

⟨u(θ),u(θ+ ε)⟩ =

√√√√√ε21 +
n−1∑
i=2

i−1∏
j=1

sin2(θj)

 ε2i ≤ ∥ε∥2. (13)

The proof of Theorem 3 can be found in Appendix B, which is based on an elegant
idea from differential geometry that the change in the angular direction is simply the
norm of the perturbation with respect to the metric tensor M for the hyperspherical

5



Wenlin Chen and Hong Ge

x1

x2

|λ|
ϕ

θ

B

0

(a) B,ϕ ∈ R2.

x1

x 2

Original feature
SP after perturbation
WN after perturbation
GmP after perturbation

(b) ϵ = 0.0001.

x1

x 2

(c) ϵ = 0.001.

x1

x 2

(d) ϵ = 0.01.

x1

x 2

(e) ϵ = 0.1.

Figure 1: (a) Characteristic activation boundary B (brown solid line) and spatial location ϕ =
−λu(θ) of a ReLU unit z = ReLU(u(θ)T x+λ) = ReLU(cos(θ)x1 + sin(θ)x2 + λ)
for inputs x ∈ R2. The characteristic activation set forms a line in R2, which
acts as a boundary separating inputs into two regions. Green arrows denote
the active region, and red arrows denote the inactive region. (b)-(e) Stability of
the characteristic activation boundary (set) of a ReLU unit in R2 under small
perturbations ε = ϵ1 to the parameters of the ReLU unit. Solid lines denote
characteristic activation boundaries B, and colored dotted lines connect the origin
and spatial locations ϕ of B. Smaller changes between the perturbed and original
boundaries imply higher stability. GmP is most stable against perturbations.

coordinate: ⟨u(θ),u(θ+ ε)⟩ = ∥ε∥M. Under GmP, this metric tensor turns out to be
diagonal: M = diag(1,m2,2, · · · ,mn−1,n−1) with mi,i =

∏i−1
j=1 sin

2(θj) ∈ [0, 1], and thus
⟨u(θ),u(θ+ ε)⟩ ≤ ∥ε∥2. This shows that GmP essentially acts as a pre-conditioner, making
neural network optimization robust against small perturbations.

It might be tempting to think that GmP is identical to WN. Indeed, GmP inherits the
advantages of WN because the length-directional decomposition in WN is automatically
inherent in GmP. However, GmP possesses an extra nice property that WN lacks: directly
parameterizing the angle θ in the hyperspherical coordinate makes the evolution of the
characteristic activation boundaries smoother and more robust against small perturbations
(e.g., SGD noise) to the parameters regardless of how small ∥w∥2 is, as shown in Equation
(13). In contrast, the characteristic activation boundary under WN is as unstable as SP,
since its change in direction under perturbations (ε, ε′) to (v, l) is given by〈

l
v

∥v∥2
, (l + ε′)

v+ ε

∥v+ ε∥2

〉
= arccos

(
vT(v+ ε)

∥v∥2∥v+ ε∥2

)
, (14)

which has exactly the same form as that for SP as in Equation (12).

3.5 Verification of the Hypotheses of Characteristic Activation Analysis

This section verifies the validity of the hypotheses of our proposed characteristic activa-
tion analysis on three illustrative experiments aided with visualization, and demonstrates
that the improved stability under GmP is beneficial for neural network optimization and
generalization.
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Figure 2: (a)-(b) Characteristic activation point B (intersection of brown solid lines and the
x-axis) and spatial location ϕ = −λu(θ) of a single ReLU unit z = ReLU(u(θ)x+λ)
(blue solid lines) for inputs x ∈ R. Green arrows denote active regions, and red
arrows denote inactive regions. (c) Evolution dynamics of the characteristic points
B in a one-hidden-layer network with 100 ReLU units for a 1D Levy regression
problem under 4 different parameterizations during training. Smaller values are
better as they indicate higher stability of the evolution of the characteristic points
during training. The y-axis is in log2 scale. (d)-(g): The top row illustrates the
experimental setup, including the network’s predictions at initialization and after
training, as well as the training data and the ground-truth function (Levy). A
single-hidden-layer network with 100 ReLU units is trained using Adam. Bottom
row: the evolution of the characteristic activation point for the 100 ReLU units
during training. Each horizontal bar shows the spatial location spectrum for a
chosen optimization step, moving from the bottom (at initialization) to the top
(after training with Adam). More spread of the spatial locations covers the data
better and adds more useful non-linearity to the model, making prediction more
accurate. Regression accuracy is measured by root mean squared error (RMSE)
on a separate test set. Smaller RMSE values are better. We use cross-validation
to select the learning rate for each method. It turns out that the optimal learning
rate for SP, WN, and BN is lower than that for GmP, since their training becomes
unstable with higher learning rates, as shown in (c).
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Figure 3: Performance of a single-hidden-layer neural network with 10 ReLU units on the 2D
Banana classification dataset under four different parameterizations trained using
Adam. (a)-(h): Trajectories of the spatial locations of the 10 ReLU units during
training. Each color depicts one ReLU unit. Smoother evolution means higher
training stability. The evolution under GmP is stable, so we can use a 10× larger
learning rate. (i): Evolution dynamics of the angles θ of the weights. Smaller
values are better as they indicate higher robustness against stochastic gradient
noise. (j)-(m): Network predictions after training. Black bold lines depict the
classification boundary between two classes. Classification accuracy is measured
on a separate test set. Higher accuracy values are better. The red stars show
the spatial locations of 10 ReLU units. Intuitively speaking, more evenly spread
out red stars are better for classification accuracy, as they provide more useful
non-linearity.
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In Figures 1b-1e, we simulate the evolution behavior of characteristic boundaries in R2

for three different neural network parameterizations: SP, WN and GmP. We apply small
perturbations ε of different scales ϵ to the network parameters under different parameteriza-
tions and show how it affects the spatial location of the characteristic activation plane. We
can see that the characteristic activation plane changes smoothly under GmP as it gradually
moves away from its original spatial location as we increase ϵ. In sharp contrast, even a
small perturbation ϵ of magnitude 10−3 can drastically change the spatial locations of the
characteristic activation planes under other parameterizations.

In Figure 2, we train a one-hidden-layer network with 100 ReLU units under various
parameterizations on the 1D Levy regression dataset using Adam (Kingma and Ba, 2014).
As shown in Figures 2a-2b, B and ϕ reduce to the same point in R, which will be referred to
as the characteristic activation point. The angle θ of the characteristic activation point can
only take two values 0 or π, corresponding to the two directions on the real line. Clearly,
GmP significantly improves the stability of the evolution of the characteristic activation
point and allows us to use a 10× large learning rate. Figure 2c shows that under GmP the
maximum change maxi |∆ϕi,t| = maxi |ϕi,t+1 − ϕi,t| at each train step t is always smaller
than 1 throughout training, while under other parameterizations the changes can be up
to 216 at some steps. The stable evolution of the characteristic point under GmP leads to
improved generalization performance on this regression task, as shown in Figures 2d-2g.

In Figure 3, we train a one-hidden-layer network with 100 ReLU units under various
parameterizations on the 2D Banana classification dataset using Adam. Figures 3a-3h show
that GmP allows us to use a 10× larger learning rate while maintaining a smooth evolution
of the characteristic activation boundary. Figure 3i shows that GmP is the only method
that guarantees stable updates for the angular directions of the weights during training with
a large learning rate: under GmP, the maximum change maxi |∆θi,t| = maxi |θi,t+1 − θi,t|
at each train step t remains low throughout training, while under other parameterizations
the change can be up to 180° at some steps. This verifies the hypothesis in our proposed
perturbation analysis. Figures 3j-3m show that under GmP, the spatial locations of the
characteristic activation boundaries move towards different directions during training and
spread over all training data points in different regions, which forms a classification decision
boundary with a reasonable shape that achieves the highest test accuracy among all compared
methods.

4 Geometric Parameterization for ReLU Networks

Motivated by the characteristic activation analysis in the hyperspherical coordinate system,
this section formally presents geometric parameterization (GmP) for ReLU networks.

4.1 Geometric Parameterization for ReLU Units

Starting from reparameterizing a single ReLU unit, we replace the weight vector w ∈ Rn

and the bias scalar b ∈ R in a standard ReLU unit (1) using the radial parameter λ ∈ R and
the angular vector θ as defined in Equations (9) and (10). We denote the activation scale
by r and move it to the outside of the ReLU activation function. These changes lead to
the geometric parameterization (GmP), a new general-purpose parameterization for ReLU
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networks:
z = rReLU(u(θ)T x+λ). (15)

GmP has three learnable parameters: the scaling parameter r, the radial parameter λ,
and angular parameter θ ∈ [θ1, · · · , θn−1] (i.e., n+ 1 degrees of free in total, which is the
same as SP). As discussed in Section 3.3, λ and θ specify the spatial location ϕ of the
characteristic activation boundary. The scaling parameter r determines the scale of the
activation. As we have seen in Section 3, GmP results in several nice properties to feature
learning: optimizing these geometric parameters in the hyperspherical coordinate during
training directly translates into a smooth evolution of the spatial location of the characteristic
activation boundary and the scale of the activation.

Let n and m denote the fan-in and fan-out of a layer. Compared to SP, GmP needs to
additionally compute 2n − 2 scalars sin(θ1), · · · , sin(θn−1), cos(θ1), · · · , cos(θn−1) for each
of the m neurons. The cost of these computations is O(mn) for all neurons in each layer.
However, since the cost of computing the affine transformation for each layer is also O(mn),
the total computational cost of GmP remains O(mn) for each layer, which is the same as
SP.

We apply GmP to all layers except for the output layer. The output layer is a linear
layer with an inverse link function (e.g., softmax or identity) for producing the network
output. Since the inverse link function involves no feature learning, the output layer cannot
be reparameterized. For multiple-hidden-layer networks, the inputs to immediate layers
are outputs from previous layers, potentially suffering from a covariate shift phenomenon
(Salimans and Kingma, 2016). The next section presents a simple fix by normalizing the
input means to ReLU units under GmP.

4.2 Input Mean Normalization for Intermediate Layers

One implicit assumption of the characteristic activation set analysis is that the input
distribution to a neuron remains unchanged during training. This assumption automatically
holds for one-hidden-layer networks since the training data is constant. However, this
assumption is not necessarily satisfied for the inputs to the intermediate layers in a multiple-
hidden-layer network. This is because the inputs to an intermediate layer are transformed
by the weights and squashed by the activation function in the previous layer, which could
cause optimization difficulties even under GmP due to covariant shift. For ReLU units in
the intermediate layers of a multiple-hidden-layer, we propose a simple fix called input mean
normalization (IMN), which subtracts the input by their empirical mean:

z = rReLU(u(θ)T(x−Ê[x]) + λ). (16)

This is a standard parameter-free data pre-processing technique which ensures that the
inputs are always centered around the origin, similar to the mean-only batch normalization
(MBN) (Salimans and Kingma, 2016) in WN but applied to post-activations instead of
pre-activations.

4.3 Layer-Size Independent Parameter Initialization

While existing neural network parameterizations are sensitive to initialization, GmP can
work with less carefully chosen initialization schemes independent of the width of the layer,
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Table 1: Validation accuracy (%) for ResNet-50 trained on ImageNet.

Metric Top-1 valid. acc. Top-5 valid. acc.

WN+MBN 72.58± 0.16 90.77± 0.12
BN 73.63± 0.09 91.11± 0.05

GmP+IMN 75.57± 0.12 92.68± 0.11

thanks to an invariant property of the hyperspherical coordinate system. To see this, first,
we consider the distribution of the angular direction of the characteristic activation boundary
under SP. Under popular initialization methods such as the Glorot initialization (Glorot
and Bengio, 2010) and He initialization (He et al., 2015), each element in the initial weight
vector w in the SP is independently and identically sampled from a zero mean Gaussian
distribution with a layer-size dependent variance. However, this always induces a uniform
distribution over the unit n-sphere for the direction u(θ) of the characteristic activation
boundary, no matter what variance value is used in that Gaussian distribution. This allows
us to initialize the angular parameter θ uniformly at random. The parameter λ is initialized
to zero due to its connection λ = b/∥w∥2 to SP and the common practice to set b = 0 at
initialization. The scaling parameter r is initialized to one based on the intuition that the
scale r roughly corresponds to the total variance of the weights w in SP. Therefore, none of
the parameters λ, θ, and r in GmP require layer-size dependent initialization.

5 Experiments

Section 3.5 already presented a detailed analysis of GmP aided with visualization on three
illustrative experiments and clearly demonstrated its improved stability and generalization
performance. This section further evaluates the performance of GmP on more challenging
real-world machine learning benchmarks, including ImageNet. We apply GmP to several
popular deep learning architectures, including ResNet-50, and train them with various
widely-used optimizers, including SGD and Adam. We use cross-validation to select the
best learning rate for each compared method in every experiment. A more detailed setup
for each experiment can be found in Appendix C.

5.1 ImageNet Classification with ResNet-50

We evaluate GmP with a gold-standard large residual neural network ResNet-50 (He et al.,
2016) on the ImageNet (ILSVRC 2012) dataset (Deng et al., 2009), which consists of
1,281,167 training images and 50,000 validation images that contain objects from 1,000
categories. The size of the images ranges from 75× 56 to 4288× 2848. We follow exactly
the same experimental setup for optimization and data augmentation as in He et al. (2016).
Specifically, we use the SGD optimizer with momentum 0.9, which turns out to be better
than Adam for image classification tasks (He et al., 2016). We reduce the learning rate
when the top-1 validation accuracy does not improve for 5 epochs and stop training when
it plateaus for 10 epochs or when the number of epochs reaches 90. We use a batch size
of 256 for all methods. We use cross-validation and find that the optimal initial learning
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Table 2: Top-1 and top-5 validation accuracy (%) for VGG-6 trained on ImageNet32.

Metric Top-1 validation accuracy Top-5 validation accuracy

Batch size 256 512 1024 256 512 1024

SP 38.31± 0.13 36.99± 0.11 35.02± 0.03 62.48± 0.14 60.71± 0.18 58.14± 0.39
WN 39.13± 0.10 37.92± 0.12 36.17± 0.03 63.28± 0.02 61.93± 0.09 60.16± 0.18

WN+MBN 42.22± 0.01 40.96± 0.02 39.33± 0.07 66.04± 0.07 65.08± 0.03 63.32± 0.08
BN 42.79± 0.03 41.90± 0.19 41.39± 0.02 67.17± 0.08 66.50± 0.25 65.89± 0.06

GmP 40.76± 0.09 41.65± 0.09 41.29± 0.08 65.08± 0.08 65.76± 0.05 65.49± 0.06
GmP+IMN 43.14± 0.05 43.62± 0.08 42.70± 0.15 67.36± 0.05 67.76± 0.09 66.98± 0.18

rate is 0.1 for all compared methods. We employ random horizontal flip, random resizing
(256-480) with preserved aspect ratio, random crop (224), and color augmentation for data
augmentation during training (Krizhevsky et al., 2017). To address the covariant shifts
between hidden layers, we employ input mean normalization (IMN) for GmP and mean
batch normalization (MBN) for WN. Table 1 reports the single-center-crop top-1 and top-5
validation accuracy for all compared methods, which shows that GmP+IMN significantly
outperforms BN and WN+MBN in terms of both top-1 and top-5 validation accuracy. This
demonstrates that our method is useful for improving large-scale residual network training.

5.2 Ablation Study

We perform ablation study to provide further insights into how the batch size and inter-
mediate normalization layer affect the convergence speed and generalization performance
of different parameterizations. To maintain a manageable computational cost, we conduct
these experiments with a medium-sized convolutional neural network VGG-6 (Simonyan
and Zisserman, 2014) on ImageNet32 (Chrabaszcz et al., 2017), which contains all 1.3M
images and 1,000 categories from ImageNet (ILSVRC 2012) (Deng et al., 2009), but with the
images resized to 32× 32. We follow exactly the same experimental setup for optimization
and data augmentation as in Chrabaszcz et al. (2017). We use the same optimizer and
learning rate scheduler as in the previous experiment. We use cross-validation and find that
the optimal initial learning rate is 0.1 for GmP and 0.01 for all the other methods. Table 2
shows that GmP+IMN consistently achieves the best top-1 and top-5 validation accuracy
for all batch sizes considered. Furthermore, the improvement of GmP+IMN over other
methods gets larger as the batch size increases, highlighting the robustness and scalability of
GmP with large batch sizes. In addition to achieving the best performance, Figure 4 shows
that GmP+IMN (the green curve) also converges significantly faster than other compared
methods: its top-5 validation accuracy converges within 25 epochs, which is 10 epochs earlier
than the second best method BN. The ablation study GmP vs GmP+IMN shows that IMN
significantly improves the performance of GmP, which is expected since it addresses the
problem of covariant shifts between hidden layers. Notably, Wide ResNet (WRN 28-2)
(Zagoruyko and Komodakis, 2016) trained with BN and batch size 500 only achieved 43.08%
top-1 validation accuracy as reported in Chrabaszcz et al. (2017), underperforming VGG-6
trained with GmP+IMN (43.62% as shown in Table 2). This reveals the significance of
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Figure 4: Convergence rate comparison: mean top-5 training and validation accuracy with
standard error as a function of training epoch for VGG-6 network trained on
the ImageNet32 dataset with a batch size of 1024. Left: top-5 training accuracy.
Right: top-5 validation accuracy.
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Table 3: Test RMSE for MLP-1 trained on six UCI benchmarks.

Benchmark Boston Concrete Energy Power Wine Yacht

SP 3.370± 0.145 5.472± 0.144 0.898± 0.274 4.065± 0.029 0.623± 0.008 0.639± 0.063
WN 3.459± 0.156 5.952± 0.148 2.093± 0.789 4.073± 0.026 0.632± 0.008 0.624± 0.076
BN 3.469± 0.153 5.695± 0.160 1.648± 0.302 4.164± 0.026 0.622± 0.011 0.777± 0.055

GmP 3.057± 0.144 5.153± 0.098 0.474± 0.013 4.022± 0.025 0.613± 0.006 0.584± 0.046

better parameterizations: even a small non-residual network like VGG-6 with GmP+IMN
can outperform large, wide residual networks like WRN 28-2.

5.3 UCI Regression with MLP

To obtain a complete picture of GmP’s empirical performance, we also evaluate GmP on six
UCI regression datasets (Dua and Graff, 2017), since the same method may exhibit different
behaviors on regression tasks and classification tasks. We train an MLP with one hidden
layer and 100 hidden units for 10 different random 80/20 train/test splits. We use the
Adam optimizer (Kingma and Ba, 2014). We use cross-validation and find that the optimal
learning rate is 0.1 for GmP and 0.01 for all the other methods. Table 3 shows that GmP
consistently achieves the best test RMSE on all benchmarks, significantly outperforming
other methods in most cases.

6 Conclusion

6.1 Discussion

We have presented a novel method, characteristic activation value analysis, for understanding
various normalization techniques and their roles in ReLU network feature learning. This
method exploits special activation values to characterize ReLU units. The preimage of such
characteristic activation values, referred to as the characteristic activation set, is used to
identify ReLU units uniquely. To advance the understanding of neural network normalization
techniques, we have performed a perturbation analysis for the characteristic activation sets
and discovered the instabilities of existing approaches. Motivated by the newly gained
insights, we have proposed a new parameterization in the hyperspherical coordinate system
called geometric parameterization. We have demonstrated its advantages for single-hidden-
layer ReLU networks and combined it with input mean normalization to handle covariance
shifts in multiple-hidden-layer ReLU networks. We have performed theoretical analysis and
empirical evaluations to validate its usefulness for improving feature learning. We have
shown that it consistently and significantly improves training stability, convergence speed,
and generalization performance for models of different sizes on a variety of real-world tasks
and datasets, including a performance boost to the gold-standard network ResNet-50 on
ImageNet (ILSVRC 2012).
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6.2 Limitations and Future Work

This work analyzed the ReLU activation function due to its wider adoption. However, the
general characteristic value analysis technique can be extended to other activation functions.
Also, we only performed the characteristic activation analysis for single-hidden-layer ReLU
networks and proposed a practical workaround to address the problem of covariant shift
between hidden layers by using input mean normalization. For future work, this analysis
needs to be generalized to examine feature learning in multiple-hidden-layer networks to
understand the theoretical behavior of deep networks. One potential difficulty with multiple-
hidden-layer networks is that the characteristic activation boundary becomes a piecewise
linear partition of the input space, which is less straightforward to analyze. A possible
solution would be to consider how the assignment of each data point to the partition evolves
during training, similar to how we track the characteristic activation sets.
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Figure 5: Visualization of characteristic activation boundaries B (brown solid lines) and
spatial locations ϕ = −λu(θ) of a single ReLU neuron z = ReLU(u(θ)x+ λ) (blue
solid lines) for inputs x ∈ R. Green arrows denote active regions and red arrows
denote inactive regions.
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Figure 6: Visualization of characteristic activation boundaries B (brown solid lines) and
spatial locations ϕ = −λu(θ) of a single ReLU neuron z = ReLU(u(θ)T x+λ) =
ReLU(cos(θ)x1 + sin(θ)x2 + λ) for inputs x ∈ R2. Green arrows denote active
regions and red arrows denote inactive regions.

Appendix A. Visualizations of the Characteristic Activation Boundaries

Figures 5 and 6 respectively visualize the characteristic activation boundaries in the input
spaces R and R2 under different conditions of the radius and angle parameters.

Appendix B. Proof of Theorem 3

Proof The main idea of this proof comes from differential geometry that the change in the
angular direction is the norm of the perturbation with respect to the metric tensor M for
the hyperspherical coordinate system: ⟨u(θ),u(θ+ ε)⟩ = ∥ε∥M. Therefore, we need to work
out a formula for calculating M.

Let us start with an input x = [x1, · · · , xn]T ∈ Rn (n ≥ 2) in the Cartesian coordinate
system, where the metric tensor is the Kronecker delta m′

ij = δij . For the geometric
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parameterization of the unit hypersphere Sn−1, we have

u1(θ) = cos(θ1),

u2(θ) = sin(θ1) cos(θ2),

u3(θ) = sin(θ1) sin(θ2) cos(θ3),

...

un−2(θ) = sin(θ1) sin(θ2) sin(θ3) · · · sin(θn−2) cos(θn−1),

un−1(θ) = sin(θ1) sin(θ2) sin(θ3) · · · sin(θn−2) sin(θn−1).

(17)

The metric tensor M for the geometric parameterization of Sn−1 is the pullback of the
Euclidean metric in Rn:

mab =
n−1∑
i=1

n−1∑
j=1

m′
ij

∂ui
∂θa

∂uj
∂θb

=
n−1∑
i=1

∂ui
∂θa

∂ui
∂θb

. (18)

• a ≠ b: we have mab = 0, since it is a sum of terms that are either zero or with
alternating signs which cancel out. Hence, M is a diagnoal matrix.

• a = b: Using the fact that sin2(θj) + cos2(θj) = 1,∀j, we have m11 = 1 and

maa =
a−1∑
i=1

sin2(θi), 2 ≤ a ≤ n− 1. (19)

Therefore, the metric tensor for the hyperspherical coordinate is a diagonal matrix

M =



1 0 0 · · · 0 0
0 sin2(θ1) 0 · · · 0 0
0 0 sin2(θ1) + sin2(θ2) · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · ·
∑n−2

i=1 sin2(θi) 0

0 0 0 · · · 0
∑n−1

i=1 sin2(θi)


. (20)

Finally, the change in the angular direction of a unit vector u(θ) under a perturbation ε to
θ is given by the norm of ε with respect to the tensor matrix M:

⟨u(θ),u(θ+ ε)⟩ = ∥ε∥M =
√
εTM ε =

√√√√√ε21 +
n−1∑
i=2

i−1∏
j=1

sin2(θj)

 ε2i . (21)

Moreover, since 0 ≤ mii =
∏i−1

j=1 sin
2(θj) ≤ 1 for all i, we have that

⟨u(θ),u(θ+ ε)⟩ ≤

√√√√ε21 +
n−1∑
i=2

ε2i = ∥ε∥2. (22)

This completes the proof.
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Appendix C. Detailed Experimental Setups

C.1 ImageNet Classification with ResNet-50

We train a ResNet-50 (He et al., 2016) on the ImageNet (ILSVRC 2012) dataset (Deng et al.,
2009), which consists of 1,281,167 training images and 50,000 validation images that contain
objects from 1,000 categories. The size of the images ranges from 75× 56 to 4288× 2848.
We follow exactly the same experimental setup for optimization and data augmentation
as in He et al. (2016). We use the SGD optimizer with momentum 0.9, which turns out
to be better than Adam for image classification tasks (He et al., 2016). We reduce the
learning rate when the top-1 validation accuracy does not improve for 5 epochs and stop
training when it plateaus for 10 epochs or when the number of epochs reaches 90. We
use a batch size of 256 for all methods. We use cross-validation to select the learning rate
for each compared method from the set {0.001, 0.003, 0.01, 0.03, 0.1, 0.3}. We find that the
optimal initial learning rate is 0.1 for all compared methods. We employ random horizontal
flip, random resizing (256-480) with preserved aspect ratio, random crop (224), and color
augmentation for data augmentation during training (Krizhevsky et al., 2017). To address
the covariant shifts between hidden layers, we employ input mean normalization (IMN) for
GmP and mean batch normalization (MBN) for WN. We report single-center-crop top-1
and top-5 validation accuracy.

C.2 Ablation Study: ImageNet32 Classification with VGG-6

To maintain a manageable computational cost for the ablation study, we train a VGG-6
(Simonyan and Zisserman, 2014) on ImageNet32 (Chrabaszcz et al., 2017), which contains all
1.3M images and 1,000 categories from ImageNet (ILSVRC 2012) (Deng et al., 2009), but with
the images resized to 32×32. We follow exactly the same experimental setup for optimization
and data augmentation as in Chrabaszcz et al. (2017). We use the SGD optimizer with
momentum 0.9, which turns out to be better than Adam for image classification tasks (He
et al., 2016). We reduce the learning rate when the top-1 validation accuracy does not
improve for 5 epochs and stop training when it plateaus for 10 epochs or when the number of
epochs reaches 90. We train the model using three common batch sizes {256, 512, 1024} for
all methods. We use cross-validation to select the learning rate for each compared method
from the set {0.001, 0.003, 0.01, 0.03, 0.1, 0.3}. We find that the optimal initial learning rate
is 0.1 for GmP and 0.01 all the other methods. We employ random horizontal flips for data
augmentation during training. We conduct an ablation study to explore the effects of input
mean normalization (IMN) for GmP and mean batch normalization (MBN) for WN in deep
networks. We report top-1 and top-5 validation accuracy.

C.3 UCI Regression with MLP

We train an MLP with one hidden layer and 100 hidden units for 10 different random
80/20 train/test splits. We use the Adam optimizer (Kingma and Ba, 2014) with full-batch
training. We use cross-validation to select the learning rate for each compared method from
the set {0.001, 0.003, 0.01, 0.03, 0.1, 0.3}. We find that the optimal initial learning rate is 0.1
for GmP and 0.01 for all the other compared methods. We report test root mean squared
error (RMSE).
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