
Meta-learning Adaptive Deep 
Kernel Gaussian Processes for 
Molecular Property Prediction

Wenlin Chen, Austin Tripp, José Miguel Hernández-Lobato

1Published at ICLR 23: https://openreview.net/forum?id=KXRSh0sdVTP

https://openreview.net/forum?id=KXRSh0sdVTP


Motivation: Molecular Design

Goal: find novel molecules with desirable biochemical/physicochemical properties.

2



Motivation: Molecular Design

Goal: find novel molecules with desirable biochemical/physicochemical properties.

Challenge:

- Chemical space is huge and complex: exhaustive search is prohibitive.

- Evaluating molecular properties is slow and expensive: small datasets are ubiquitous.

2



Motivation: Molecular Design

Goal: find novel molecules with desirable biochemical/physicochemical properties.

Challenge:

- Chemical space is huge and complex: exhaustive search is prohibitive.

- Evaluating molecular properties is slow and expensive: small datasets are ubiquitous.

Gaussian processes (GPs):

2

ü GPs could be used as surrogate models in Bayesian optimization to guide molecule search.

ü GPs are well-calibrated models with generally reliable uncertainty on small datasets.



Motivation: Molecular Design

Goal: find novel molecules with desirable biochemical/physicochemical properties.

Challenge:

- Chemical space is huge and complex: exhaustive search is prohibitive.

- Evaluating molecular properties is slow and expensive: small datasets are ubiquitous.

Gaussian processes (GPs):

2

ü GPs could be used as surrogate models in Bayesian optimization to guide molecule search.

û Hand-designing kernels for structured data like molecules is challenging.

ü GPs are well-calibrated models with generally reliable uncertainty on small datasets.



Motivation: Molecular Design

Goal: find novel molecules with desirable biochemical/physicochemical properties.

Challenge:

- Chemical space is huge and complex: exhaustive search is prohibitive.

- Evaluating molecular properties is slow and expensive: small datasets are ubiquitous.

Gaussian processes (GPs):

2

ü GPs could be used as surrogate models in Bayesian optimization to guide molecule search.

û Hand-designing kernels for structured data like molecules is challenging.

ü GPs are well-calibrated models with generally reliable uncertainty on small datasets.

We want better GP models for molecules!
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Previous Methods for Training Deep Kernel GPs

1. Deep Kernel Learning (DKL, Wilson et al., 2016)

- All parameters are learned by minimizing the negative log marginal likelihood (NLML) on a single 
dataset.

- Pure single-task learning (a separate deep kernel GP is trained for each task).
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1. Deep Kernel Learning (DKL, Wilson et al., 2016)

- All parameters are learned by minimizing the negative log marginal likelihood (NLML) on a single 
dataset.

- Pure single-task learning (a separate deep kernel GP is trained for each task).

û Severe overfitting (Ober et al., 2021) on small datasets despite the use of type-II ML.

4
Ober, Sebastian W., Carl E. Rasmussen, and Mark van der Wilk. "The promises and pitfalls of deep kernel learning." Uncertainty in Artificial Intelligence. PMLR, 2021.

Wilson, Andrew Gordon, et al. "Deep kernel learning." Artificial intelligence and statistics. PMLR, 2016.

DKL makes all output values strongly correlated!
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Previous Methods for Training Deep Kernel GPs

2. Deep Kernel Transfer (DKT, Patacchiola et al., 2020)

- All parameters are learned by minimizing the expected NLML over a distribution of datasets.  

- Pure meta-learning (all parameters are shared across tasks).

û Underfitting due to model mis-specification.

5
Patacchiola, Massimiliano, et al. "Bayesian meta-learning for the few-shot setting via deep kernels." Advances in Neural Information Processing Systems 33 (2020): 16108-16118.

It’s unrealistic to assume all datasets are drawn from an identical 
GP with the same noise, signal variance, characteristic lengthscales!
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- Adapt base kernel parameters 𝝍$%$&# = 𝜽 to each task’s training set         by minimizing the NLML        train loss. 

- ADKF-IFT interpolates between DKL and DKT:

- Meta-learn feature extractor parameters 𝝍!"#$ = 𝝓 to optimize the model’s average performance on 
the test sets         of many tasks (after 𝝍$%$&# = 𝜽 has been separately adapted to each of these tasks).

- Interpretation: DNN meta-learns generally useful features across tasks, such that a task-specific GP 
operates on top of such features achieves the highest predictive performance on average.

- The validation loss          is the negative log joint predictive posterior on the test set         given the training set   .

- Partition the deep kernel parameters 𝝍 = [𝜽,𝝓] into two disjoint sets 𝝍!"#$ = 𝝓 and 𝝍$%$&# = 𝜽.
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Contrast DKL, DKT and ADKF-IFT

ü It regularizes the feature 
extractor using meta-learning.

ü It adapts base kernel parameters 
separately to each task.

ü It learns feature extractor and 
base kernel parameters on different 
subsets (train/test) of a dataset.

- ADKF-IFT reduces overfitting:

- ADKF-IFT reduces underfitting:
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Justification: two related tasks are more likely to have different noise levels, signal variances, or 
characteristic lengthscales than to require substantially different feature representations.



How to Solve the Bilevel Optimization Problem?

best response function for a 
given task      and 𝝍!"#$

- Meta-training: ADKF-IFT can be formalized as a bi-level optimization problem.

8



How to Solve the Bilevel Optimization Problem?

- Meta-training: ADKF-IFT can be formalized as a bi-level optimization problem.

best response function for a 
given task      and 𝝍!"#$

8

- Inner optimization: the gradient of the train loss        can be calculated using auto-diff.



How to Solve the Bilevel Optimization Problem?

- Meta-training: ADKF-IFT can be formalized as a bi-level optimization problem.

best response function for a 
given task      and 𝝍!"#$

implicit function 
of  𝝍!"#$ alone

- Outer optimization: how to calculate the gradient for the validation loss        ?

easy easy hard

Hypergradient: (by chain rule)

8

- Inner optimization: the gradient of the train loss        can be calculated using auto-diff.



How to Solve the Bilevel Optimization Problem?

- Meta-training: ADKF-IFT can be formalized as a bi-level optimization problem.

best response function for a 
given task      and 𝝍!"#$

implicit function 
of  𝝍!"#$ alone

- Outer optimization: how to calculate the gradient for the validation loss        ?

easy easy hard

û The best response function 𝝍𝒂𝒅𝒂𝒑𝒕∗ is defined by an argmin function! How to differentiate it?

û Auto-diff requires tracking the gradients through many iterations of the inner optimization (intractable)!

- Inner optimization: the gradient of the train loss        can be calculated using auto-diff.

Hypergradient: (by chain rule)
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Solve the Bilevel Optimization Problem by Implicit Function Theorem

- Meta-training: ADKF-IFT can be formalized as a bi-level optimization problem.

best response function for a 
given task      and 𝝍!"#$

implicit function 
of  𝝍!"#$ alone

- Outer optimization: how to calculate the gradient for the validation loss        ?

easy easy hard

- Since 𝝍𝒂𝒅𝒂𝒑𝒕∗ is a critical point of the train loss      , we can apply the Implicit Function Theorem (IFT)!

Hypergradient: (by chain rule)

IFT:

(inverse Hessian) (mixed partial derivatives)
9
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ü No backpropagate through the feature extractor is required!
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Exact and Efficient Gradient Computation

- Meta-training: ADKF-IFT can be formalized as a bi-level optimization problem.

best response function for a 
given task      and 𝝍!"#$

implicit function 
of  𝝍!"#$ alone

- Outer optimization: the hypergradient of the validation loss         can be obtained using IFT.

IFT:
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ü No backpropagate through the feature extractor is required!

- Inner optimization: the gradient of the train loss        can be calculated using auto-diff.

ü Common GP based kernels (e.g., RBF) contains only a handful of parameters 𝝍$%$&# = 𝜽.
ü The inverse Hessian in IFT can be computed exactly without any approximation!

ü Use L-BFGS for base kernel parameter 𝝍$%$&# = 𝜽 optimization (fast and efficient).



General Framework vs. Specific Instantiations

ü 𝝍&'&(), 𝝍*+)&, could be anything, which makes ADKF-IFT a general framework.

ü Any particular choice of 𝝍&'&(), 𝝍*+)&,                  is an instantiation of the general framework.

ü DKL and DKT are special instantiations (extreme cases) of this general framework!

ADKF-IFT can be formalized as a bi-level optimization problem:

11



The General Framework Unifies Previous Methods (DKL and DKT)

Adaptive Deep Kernel Fitting with Implicit Function Theorem (ADKF-IFT) 

Deep Kernel Learning (DKL) Deep Kernel Transfer (DKT)

𝝍!"#$ = 𝝍 = [𝜽,𝝓]

𝝍$%$&# = ∅𝝍!"#$ = ∅

𝝍$%$&# = 𝝍 = [𝜽,𝝓]

= NLML

(NLML: negative log marginal likelihood)

= NLML

12



Experiment 1: Few-shot Molecular Property Prediction on FS-Mol

- FS-Mol (Stanley et al., 2021): 4,938 training tasks, 40 validation tasks, 157 test tasks; 233,786 unique compounds.

ü The improvements of ADKF-IFT over other methods are statistically significant!
13

Stanley, Megan, et al. "Fs-mol: A few-shot learning dataset of molecules." Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2). 2021.



Experiment 1: Ablation Study and Analysis on FS-Mol
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- DKT+ is like DKT but tuning the base kernel parameters 𝜽 for each task during meta-testing.
- ADKF is like ADKF+ but ignoring the gradient through the best response function 𝝍𝒂𝒅𝒂𝒑𝒕∗ .

14

ü DKT ≈ DKT+ ≤ADKF<ADKF+



Experiment 1: Ablation Study and Analysis on FS-Mol

- Blue histogram: the distribution of the base kernel 
parameters 𝜽 across different tasks learned by 
ADKF-IFT.

- Dotted vertical line: the base kernel parameters 𝜽
shared across all tasks learned by DKT.

ü The base kernel parameters 𝜽 do vary across tasks!

ü ADKF-IFT achieves better signal-to-noise ratio!

15



Experiment 2: OOD Molecular Property Prediction and Optimization

- Bayesian optimization (BO)

- Test predictive negative log likelihood (NLL)

- Evaluation: four OOD molecular 
design tasks outside of FS-Mol.

- Surrogate model: GP operating on top 
of the features extracted by DNNs meta-
trained on FS-Mol by different methods.

ü ADKF-IFT enables fastest discovery of 
top performing molecules!

ü ADKF-IFT achieves competitive test 
predictive performance!

16



Summary

Our proposed Adaptive Deep Kernel Fitting with Implicit Function Theorem (ADKF-IFT) approach:

ü meta-learns feature representations that facilitate the adaptation of task-specific GP models;

ü produces state-of-the-art results on few-shot molecular property prediction benchmarks;

ü achieves great performance on OOD molecular property prediction and optimization tasks;

ü produces well-calibrated models for fully-automated high-throughput experimentation that could 
accelerate drug discovery and material design.

Published at ICLR 23: https://openreview.net/forum?id=KXRSh0sdVTP

ü generalizes DKL and DKT for training deep kernel GPs using a bilevel optimization framework;

17

ü efficiently solve the bilevel optimization problem by implicit function theorem;

https://openreview.net/forum?id=KXRSh0sdVTP


Thank you!
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Limitations and Future Work Directions

19

1. Use ARD for the lengthscale parameter in the base kernel for automatic feature selection.

2. Adapt the feature extractor to each task by allowing small deviations from a meta-learned prior.

3. Adopt a more principled approximate inference method for GP classification.

4. Inject domain expertise from drug discovery into the base kernel with hand-curated features 
and kernel combination.

5. Consider other application domains such as few-shot image classification.

Published at ICLR 23: https://openreview.net/forum?id=KXRSh0sdVTP

https://openreview.net/forum?id=KXRSh0sdVTP


Appendix 1: Mean ranks of Compared Methods on FS-Mol

20
ADKF-IFT consistently ranks the best in all settings!



Appendix 2: Statistical Comparisons on FS-Mol
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The improvements of ADKF-IFT over other methods are statistically significant!



Appendix 3: Sub-benchmark Performance on FS-Mol
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Appendix 4: Meta-testing Cost on FS-Mol
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Appendix 6: Few-shot Molecular Property Prediction on MoleculeNet (Wu et al., 2018)

24
Wu, Zhenqin, et al. "MoleculeNet: a benchmark for molecular machine learning." Chemical science 9.2 (2018): 513-530.


