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Challenge:

- Evaluating molecular properties 1s slow and expensive: small datasets are ubiquitous.
- Chemical space is huge and complex: exhaustive search is prohibitive.
Gaussian processes (GPs):
v" GPs are well-calibrated models with generally reliable uncertainty on small datasets.
v" GPs could be used as surrogate models in Bayesian optimization to guide molecule search.
*x Hand-designing kernels for structured data like molecules is challenging.

We want better GP models for molecules!
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Model: Deep Kernel Gaussian Processes

Why not just learn features for molecules using a deep neural network (DNN)?

Deep kernel GPs operate on features learned by a DNN.
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Previous Methods for Training Deep Kernel GPs

1. Deep Kernel Learning (DKL, Wilson et al., 2016)

- All parameters are learned by minimizing the negative log marginal likelthood (NLML) on a single

dataset. y* = argmin NLML (¢, S7)
P

- Pure single-task learning (a separate deep kernel GP is trained for each task).

Wilson, Andrew Gordon, et al. "Deep kernel learning." Artificial intelligence and statistics. PMLR, 2016.

Ober, Sebastian W., Carl E. Rasmussen, and Mark van der Wilk. "The promises and pitfalls of deep kernel learning." Uncertainty in Artificial Intelligence. PMLR, 2021.



Previous Methods for Training Deep Kernel GPs

1. Deep Kernel Learning (DKL, Wilson et al., 2016)

- All parameters are learned by minimizing the negative log marginal likelthood (NLML) on a single

"

- Pure single-task learning (a separate deep kernel GP is trained for each task).

x Severe overfitting (Ober et al., 2021) on small datasets despite the use of type-I11 ML.
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(a) SE kernel (b) Exact DKL kernel
DKL makes all output values strongly correlated!

Wilson, Andrew Gordon, et al. "Deep kernel learning." Artificial intelligence and statistics. PMLR, 2016.

Ober, Sebastian W., Carl E. Rasmussen, and Mark van der Wilk. "The promises and pitfalls of deep kernel learning." Uncertainty in Artificial Intelligence. PMLR, 2021.



Previous Methods for Training Deep Kernel GPs

2. Deep Kernel Transfer (DKT, Patacchiola et al., 2020)
- All parameters are learned by minimizing the expected NLML over a distribution of datasets.

P* = arg ;nin E, 7 [NLML(), T)]

- Pure meta-learning (all parameters are shared across tasks).

Patacchiola, Massimiliano, et al. "Bayesian meta-learning for the few-shot setting via deep kernels." Advances in Neural Information Processing Systems 33 (2020): 16108-16118.
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2. Deep Kernel Transfer (DKT, Patacchiola et al., 2020)
- All parameters are learned by minimizing the expected NLML over a distribution of datasets.

P* = arg ;nin E, 7 [NLML(), T)]

- Pure meta-learning (all parameters are shared across tasks).

x Underfitting due to model mis-specification.

It’s unrealistic to assume all datasets are drawn from an 1dentical
GP with the same noise, signal variance, characteristic lengthscales!

Patacchiola, Massimiliano, et al. "Bayesian meta-learning for the few-shot setting via deep kernels." Advances in Neural Information Processing Systems 33 (2020): 16108-16118.
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Adaptive Deep Kernel Fitting with Implicit Function Theorem (ADKF-IFT)

- ADKF-IFT interpolates between DKL and DKT:

- Partition the deep kernel parameters Y = [0, ¢p] into two disjoint sets Pt = P and Y44 = 6.
- Adapt base kernel parameters Y44, = 6 to each task’s training set S+ by minimizing the NLML L train loss.

- Meta-learn feature extractor parameters 1,,,.;, = ¢ to optimize the model’s average performance on
the test sets Q7 of many tasks (after Yaaap: = 0 has been separately adapted to each of these tasks).

- The validation loss Ly, is the negative log joint predictive posterior on the test set @7 given the training set S

- Meta-training: ADKF-IFT can be formalized as a bi-level optimization problem.

va:]cta — arg min lEp(T) [["’V (’lz)meta? w:dapt(d)mcta? ST)? T)]*

meta

bt I¢;dtlp[(¢m€lu’ ST) - ELI;% IIliIl ['.’T(’d)metm ’l/)adaptv ST) .
adapt

- Interpretation: DNN meta-learns generally useful features across tasks, such that a task-specific GP
operates on top of such features achieves the highest predictive performance on average.

best response function for a
given task 7 and Y0t
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Contrast DKL, DKT and ADKF-IFT
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Justification: two related tasks are more likely to have different noise levels, signal variances, or
characteristic lengthscales than to require substantially different feature representations.
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reduces overfitting:

It regularizes the feature
extractor using meta-learning.

It learns feature extractor and
base kernel parameters on different
subsets (train/test) of a dataset.

reduces

It adapts base kernel parameters
separately to each task.

Justification: two related tasks are more likely to have different noise levels, signal variances, or
characteristic lengthscales than to require substantially different feature representations.
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How to Solve the Bilevel Optimization Problem?

implicit function

- Meta-training: can be formalized as a problem. / of P alone
meta
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- Inner optimization: the gradient of the train loss L7 can be calculated using auto-diff.

- Outer optimization: how to calculate the gradient for the validation loss Ly

d EV 0 EV 0 EV 0 ¢:1<dapt

= 8 o ﬁ .
d ,"bmcm 0 ¢mcla 0 ’(padapl 0 ¢mcta (by Chaln mle)
hard

x The best response function ¥ q4y¢ is defined by an argmin function! How to differentiate it?

* Auto-diff requires tracking the gradients through many iterations of the inner optimization (intractat%le)!



Solve the Bilevel Optimization Problem by Implicit Function Theorem
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- Meta-training: ADKF-IFT can be formalized as a bi-level optimization problem.

- Outer optimization: how to calculate the gradient for the validation loss Ly

ALy _ 9Ly . 9Ly |9 %um |
Aot OVmen O Wtapt| O Yrmeta| (by chain rule)

easy easy hard

- Since ¢Zdapt is a critical point of the train loss L7, we can apply the Implicit Function Theorem (IFT)!
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implicit function
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- Meta-training: ADKF-IFT can be formalized as a bi-level optimization problem.

- Outer optimization: how to calculate the gradient for the validation loss Ly

dly _ 0Ly N 8 Ly |0 Pasan |
R TN T (by chain rule)

easy easy hard

Hypergradient:

- Since ¢Zdapt is a critical point of the train loss L7, we can apply the Implicit Function Theorem (IFT)!

—1
* 2 2
IFT: 0 ¢adapt o (8 cT(¢mctav ¢adapt7 ST') 9 ‘CT(wmctav ’wadapt? ST’)
’ S T T ’
0 ¢meta e 0 wadapt 9 wadapt 0 ¢adapt 9 wmcta " :
meta ? 7 adapt
(inverse Hessian) (mixed partial derivatives) '

/ /
where wadapt = w:dapt ('¢meta7 ST')' 9



Exact and Efficient Gradient Computation

implicit function

/ of Y, erq alone
"p:lcta — arg min lE‘p(T) [‘CV (’(/)metaﬂ lp:dapt(lwmctaﬂ ST)? T)]*

meta

: best response function for a
s.t. L S7) = argmin Lp(Y s Wogais ST). .
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adapt

- Meta-training: ADKF-IFT can be formalized as a bi-level optimization problem.
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- Meta-training: ADKF-IFT can be formalized as a bi-level optimization problem.

- Inner optimization: the gradient of the train loss L7 can be calculated using auto-diff.

v" No backpropagate through the feature extractor is required!

v Use L-BFGS for base kernel parameter ¥, 4,,,; = 0 optimization (fast and efficient).
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Exact and Efficient Gradient Computation

implicit function

/ of Y, erq alone
,(?Z):]Cta — arg min lEP(T) [‘CV (fwmctaﬂ llvb:dapt(t/)mctaﬂ ST)? T)]*

meta

: best response function for a
s.t. L, (Y ... .S7) = argmin Lp(¥ ... .0 ST). < .
‘1[ dddpl(d meta’ T) < 5; 1 (d meta’ ‘/’dddpt. T) given task 7 and ¥,,.,4
adapt

- Meta-training: ADKF-IFT can be formalized as a bi-level optimization problem.

- Inner optimization: the gradient of the train loss L7 can be calculated using auto-diff.

v" No backpropagate through the feature extractor is required!

v Use L-BFGS for base kernel parameter ¥, 4,,,; = 0 optimization (fast and efficient).

- Outer optimization: the hypergradient of the validation loss £y, can be obtained using IFT.

0 ¢:dapt

IFT:
0 ’(rbmcta

-1
= 0 LT(¢mcta? 17badapt% ST’) a3 ['T(’lpmctaﬂ '(padapt? ST')
0 wadapt d "'pZ:lapt 7 ¢adapt d ¢£cta

/
Ilp meta

'/):nela’ ;lldap[
v" Common GP based kernels (e.g., RBF) contains only a handful of parameters 44, = 6.

v" The inverse Hessian in IFT can be computed exactly without any approximation! »



General Framework vs. Specific Instantiations

ADKF-IFT can be formalized as a bi-level optimization problem:

I‘lb:;]ct‘d - 8’1‘1% min E})(T) [‘CV (fwmetaﬂ ’Qb:dapt(/wmcta? ST)? T)]*

s.t. 9 :dupt(d) meta’ ST) - zu"c,bg min ‘C'T(,lpmctu* d)adapt* ST) :
adapt

Y Yadapt> Pmeta> L1, Ly could be anything, which makes ADKF-IFT a general framework.

v" Any particular choice of Yag0pt, WYmetas L1, Ly is an instantiation of the general framework.

v" DKL and DKT are special instantiations (extreme cases) of this general framework!
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The General Framework Unifies Previous Methods (DKL and DKT)

(A

daptive Deep Kernel Fitting with Implicit Function Theorem (ADKF-IFT)

"J):wta - a‘ri min JEp('T) [LV (’lpmetaa ¢:dapt(¢metaﬂ ST)? T)]*

meta

s.t. ’d):dapt("vbmeta’ ST) — arg min ET('l:bmelan ,”badapt? ST) :

~

\ wadapt /
1I)adapt =9 =10, ] Yeta =P = [0, P]
Vmeta = @ L =NLML Ly =NLML Yadapt = 0
4 A 4 )
¥* = argmin NLML (¢, S7) Y™ = argmin E),(7)[NLML(%, T)]
P Y
\_Deep Kernel Learning (DKL) y L Deep Kernel Transfer (DKT) y

(NLML: negative log marginal likelithood)
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Experiment 1: Few-shot Molecular Property Prediction on FS-Mol

- FS-Mol (Stanley et al., 2021): 4,938 training tasks, 40 validation tasks, 157 test tasks; 233,786 unique compounds.

(.30 - 0.4

%r)().‘_)() —= 0.2
o — -
= | s aS
<10.15 ; 3 ; ! 0.1
Ay~ —4— ADKF-IFT —— RF
| $— DKT #— MAT 5
0.10 / : —4— ProtoNet ° kNN 0.0 ]
¥ —— CNP —4— GNN-ST —4— ADKFIFT —4— RF
0.05{ ® —— GNN-MAML < PAR g y —4— DKT —— GNN-MT
' '/.’____"/—+— GP-ST o DKL —4— CNP +— MAT
—4— GNN-MT v —4$— GP-ST o DKL
V01632 64 128 256 IR CEZT 128 &35
Support set size Support set size
(a) Classification (157 tasks). (b) Regression (111 tasks).

v" The improvements of ADKF-IFT over other methods are statistically significant!

Stanley, Megan, et al. "Fs-mol: A few-shot learning dataset of molecules." Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2). 2021.



Experiment 1: Ablation Study and Analysis on FS-Mol
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(a) Classification (157 tasks). (b) Regression (111 tasks).

v DKT = DKT+ < ADKF < ADKF+

- DKT+ 1s like DK'T but tuning the base kernel parameters 0 for each task during meta-testing.
- ADKF is like ADKF+ but ignoring the gradient through the best response function Yg40.);-

d »CV 0 »CV 0 »CV d dddpt
0

d ¢metd a ¢metd 8 dpt '(pmetd
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Experiment 1: Ablation Study and Analysis on FS-Mol

noise amplitude lengthscale
I

© 200

100 4

- Blue histogram: the distribution of the base kernel

parameters @ across different tasks learned by
ADKF-IFT.

o 750 1 / 200 A

100 4

o - Dotted vertical line: the base kernel parameters 0
j shared across all tasks learned by DKT.

v" The base kernel parameters 8 do vary across tasks!

v ADKF-IFT achieves better signal-to-noise ratio!
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Experiment 2: OOD Molecular Property Prediction and Optimization

Bayesian optimization (BO)

| o E - Surrogate model: GP operating on top

: g 5, of the features extracted by DNNs meta-

g ‘" 8 || e trained on FS-Mol by different methods.
e F E? ~ ermeese | - Evaluation: four OOD molecular

0 2 4 6 6 10 12 14 16 18 20
The number of molecu'es queried

0 3 6 9 12 15 16 21 24 27 30
The number of maolecules queried

0 4 8 12 16 20 24 28 32 36 40

The number of mo ecu'es queried The number of melecu'es queried

design tasks outside of FS-Mol.

(a) Molecular docking. (b) Antibiotic discovery. (c) Antiviral drug design. (d) Material design.

- Test predictive negative log likelthood (NLL) / ADKF-IFT enables fastest discovery of

Feature Out-of-domain molecular design task tOp performing mOleculeS!
representation  Molecular docking — Antibiotic discovery — Antiviral drug design ~ Material design
Fingerprint 1.138 £ 0.014 1.669 £ 0.075 4.601 L 0.086 1.091 + 0.011
PAR 1.270 £ 0.019 2.185 + 0.115 1.840 + 0.086 1.283 £ 0.017 . ...
MAT 1.528 4+ 0.028 2.390 + 0.104 4.797 £ 0.088 2.198 + 0.063 v" ADKF-IFT achieves competitive test
GNN-MT 1.994 £ 0.050 3.692 + 0.225 6.399 + 0.181 7.254 1+ 0.217 L.
CNP 1.493 + 0.028 2.537 + 0.162 5.005 1+ 0.086 1.741 1+ 0.043 predictive performance!
ProtoNet 1.147 £ 0.013 1.615 £ 0.094 5.060 1+ 0.086 1.032 £ 0.009
DKT 1.167 £ 0.012 1.602 £ 0.073 4.975 + 0.092 1.026 £ 0.009
ADKF-IFT  1.137 1 0.011 1.496 1+ 0.043 4.781 + 0.087 0.996 L 0.007
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Summary
Our proposed Adaptive Deep Kernel Fitting with Implicit Function Theorem (ADKF-IFT) approach:
meta-learns feature representations that facilitate the adaptation of task-specific GP models;
generalizes DKL and DKT for training deep kernel GPs using a bilevel optimization framework;
efficiently solve the bilevel optimization problem by implicit function theorem;
produces state-of-the-art results on few-shot molecular property prediction benchmarks;
achieves great performance on OOD molecular property prediction and optimization tasks;

produces well-calibrated models for fully-automated high-throughput experimentation that could
accelerate drug discovery and material design.

Published at ICLR 23: https://openreview.net/forum?id=KXRShOsdVTP
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Thank you!

Published at ICLR 23: https://openreview.net/forum?id=KXRShOsdVTP
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Limitations and Future Work Directions

1. Use ARD for the lengthscale parameter in the base kernel for automatic feature selection.
2. Adapt the feature extractor to each task by allowing small deviations from a meta-learned prior.
3. Adopt a more principled approximate inference method for GP classification.

4. Inject domain expertise from drug discovery into the base kernel with hand-curated features
and kernel combination.

5. Consider other application domains such as few-shot image classification.
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Appendix 1: Mean ranks of Compared Methods on FS-Mol

Table 4: Mean ranks of all compared methods in terms of their performance on all FS-Mol test tasks.

(a) Classification (157 tasks).

(b) Regression (111 tasks).

Support set size

Method
16 32 64 128 256 i
GNN-ST 1120 ‘1153 11-75 11.85 1219 Method
kNN 10.89 10.48 10.33 10.15  9.37 Lo 2 of 128 256
MAT 10.43 10.44 10.19 9.69 9.70 MAT 7.60 7.45 7.26 7.06 7.19
RF 8.15 7.89 7.06 6.25 4.47 GNN-MT 6.61 6.40 6.15 5.95 5.58
PAR 7.70 7.98 8.30 8.83 10.81 ; .
5 5 ; RF 5.00 4.47 4.16 3.72  3.56
GNN-MT 7.33 7.18 7.08 6.59 6.53 : : pli
GP-ST 6.71 6.57 6.28 6.18  5.14 GP-ST 4.23  4.14 3.87 3.37  3.07
GNN-MAML  6.36 6.92 7.42 7.89 8.90 CNP 3.88. 4.45 4.95 5.73  6.47
CNP 5.00 5.81 6.36 6.91 2.8 DKT 212 208 229 232 243
ProtoNet 4.00 3.40 3.11 2.98 3.85 ADKF-IFT 2.12 1.86 1.68 1.74 1.36
DKT 3.44 3.19 2.99 2.99 2.67
ADKE-IFT 2.41 212 2.14 2.26 1.38

ADKF-IFT consistently ranks the best in all settings!
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Appendix 2: Statistical Comparisons on FS-Mol

Table 5: p-values from the two-sided Wilcoxon signed-rank test for statistical comparisons between
ADKEF-IFT and DKT/DKT+/ADKE. The null hypothesis is that the median of their performance
differences on all FS-Mol test tasks is zero. The significance level is set to a = 0.05.

Support set size

Compared models Task type 16 3 64 128 256
Classification W | s gl Aot 2 g e p— 2 1. 0sein— - B e | | s
RORTAER wsORCE Regression 8.2 x 102 9.6 x 10~2 3.7 x 105 7.1 x 10~5 9.8 x 107
Classification 200 2 TOx 10" 2.3 x 1028 1.2510 2 1.6 X 10~
ADKF-IFT vs DKT+  peoression 3.2 x 10~ 2 4.2 x 10~ 1 3.4 x 1075 52x10"10 1.2x10°°
Classification o G | | 0 1 1 4.8 x 1071 8.3 x 1071 1.6 x 10~ 3
ADKF-IFT vs ADKE  pooression 2.8 x 10~ 3 4.2 x 10~4 1.3 x 10~3 4.1 x 10~ 1.3 x 10~5

The improvements of ADKF-IFT over other methods are statistically significant!
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Appendix 3: Sub-benchmark Performance on FS-Mol

Table 6: Mean performance with standard errors of top performing methods on FS-Mol test tasks
within each sub-benchmark (broken down by EC category) at support set size 64 (the median of all
considered support sizes). Note that class 2 is most common in the FS-Mol training set (~ 1, 500
training tasks), whereas classes 6 and 7 are least common in the FS-Mol training set (< 50 training
tasks each).

(a) Classification (AAUPRC).

FS-Mol sub-benchmark (EC category) Method
Class Description #tasks RF GP-ST ProtoNet DKT ADKF-IFT
1 oxidoreductases 7 0.156 £ 0.044 0.152 £ 0.040 0.137 £ 0.037 0.145 4 0.040 0.160 + 0.045
2 kinases 125 0.152 £ 0.009 0.161 + 0.009 0.285 + 0.010 0.282 + 0.010 0.299 + 0.010
3 hydrolases 20 0.229 £ 0.032 0.230 £ 0.032 0.245 + 0.034 0.254 4 0.034 0.262 1+ 0.033
4 lysases 2 0.276 £+ 0.182 0.284 + 0.189 0.265 + 0.211 0.272 1+ 0.206 0.279 £ 0.201
b isomerases 1 0.166 £ 0.040 0.212 + 0.052 0.172 + 0.044 0.204 + 0.058 0.198 £ 0.046
6 ligases 1 0.149 + 0.035 0.199 + 0.028 0.170 £ 0.028 0.229 + 0.013 0.231 + 0.022
7 translocases 1 0.128 + 0.039 0.109 £ 0.049 0.099 + 0.028 0.122 4 0.022 0.109 £+ 0.033
all enzymes 157 0.163 + 0.009 0.171 £+ 0.009 0.271 + 0.009 0.271 + 0.010 0.285 + 0.010
(b) Regression (R2,).
FS-Mol sub-benchmark (EC category) Method
Class Description #tasks RF GP-ST CNP DKT ADKF-IFT
1 oxidoreductases 6 0.108 + 0.087 0.103 = 0.076 —0.012 + 0.011 0.098 £+ 0.078 0.116 + 0.079
2 kinases 82 0.160 + 0.019 0.162 + 0.022 0.127 = 0.017 0.343 #+ 0.022 0.363 + 0.024
3 hydrolases 19 0.256 + 0.058 0.267 £+ 0.061 0.014 = 0.015 0.295 + 0.063 0.310 + 0.062
4 lysases 2 0.418 + 0.405 0.417 £ 0.416 0.100 = 0.068 0.440 #+ 0.418 0.442 + 0.403
5 isomerases | 0.125 + 0.077 0.086 + 0.082 —0.012 + 0.010 0.209 £+ 0.113 0.226 + 0.063
6 ligases | 0.182 + 0.040 0.202 + 0.079 0.002 £ 0.004 0.277 £ 0.035 0.279 1+ 0.043
all enzymes 111 0.178 + 0.019 0.181 £ 0.021 0.097 £ 0.014 0.321 £ 0.021 0.340 + 0.022
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Appendix 4: Meta-testing Cost on FS-Mol
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Figure 5: Wall-clock time consumed (with standard errors) when meta-testing on a pre-defined set of
FS-Mol classification tasks using each of the compared meta-learning methods.
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Appendix 6: Few-shot Molecular Property Prediction on MoleculeNet (Wu et al., 2018)

Table 1: Mean test performance (AUROCY%) with standard deviations of all compared methods on
MoleculeNet benchmark tasks at support set size 20 (i.e., 2-way 10-shot).

MoleculeNet benchmark task (#compounds in total)

Method Tox21 (8,014)  SIDER (1.427) MUV (93.127) ToxCast (8.615)
Siamese 80.40 £+ 0.35 110 =432 9909 =513 -
ProtoNet 7498 +032 6454+089 6588+4.11  63.70 + 1.26
MAML 80.21+0.24 7043+076 63.90+228  66.79 + 0.85
TPN 76.05+024 67.84+095 65224582  62.74 + 1.45
EGNN 81.21+0.16 72.87+0.73 65.20+208  63.65+ 1.57
IterRefLSTM  81.10+0.17  69.63+0.31  45.56 + 5.12 :
PAR 82.06+0.12 74.68+031 6648+212  69.72 + 1.63
ADKF-IFT 8243 +060 67.72+121 98.18+3.05 72.07+0.81
Pre-GNN 82.14+0.08 73.96+008 67.14+1.58  73.68+0.74
Meta-MGNN ~ 82.97+0.10 7543 +0.21  68.99 + 1.84 i
Pre-PAR 84.93+0.11 78.08+016 69.96+1.37 7512+ 0.84
Pre-ADKF-IFT 86.06 +0.35 70.95+0.60 9574+0.37 76.22+0.13
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