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ABSTRACT

This work extends the theory of identifiability in supervised learning by considering
the consequences of having access to a distribution of tasks. In such cases, we show
that identifiability is achievable even in the case of regression, extending prior work
restricted to linear identifiability in the single-task classification case. Furthermore,
we show that the existence of a task distribution which defines a conditional prior
over latent factors reduces the equivalence class for identifiability to permutations
and scaling, a much stronger and more useful result than linear identifiability.
When we further assume a causal structure over these tasks, our approach enables
simple maximum marginal likelihood optimization together with downstream
applicability to causal representation learning. Empirically, we validate that our
model outperforms more general unsupervised models in recovering canonical
representations for both synthetic and real-world molecular data.

1 INTRODUCTION

Multi-task regression is a common problem in machine learning, which naturally arises in many
scientific applications such as molecular property prediction (Stanley et al., 2021; Chen et al., 2023).
Despite this, most deep learning approaches to this problem attempt to model the relationships
between tasks through heuristic approaches, such as fitting a shared neural network in an attempt
to capture the joint structures between tasks. Beyond lacking a principled approach to modeling
task relationships, these approaches fail to account for how we may expect the latent factors for
related tasks to change. In this work, we show that by leveraging assumptions about the relationships
between the latent factors of the data across tasks, in particular that they vary sparsely in their causal
and spurious relationships with the target variables, we can achieve identifiability of the latent factors
up to permutations and scaling, and simultaneously identify the causal and spurious latent factors
with respect to the target variable.

A common assumption in the causal representation learning literature, known as the sparse mechanism
shift hypothesis (Schölkopf, 2019; Schölkopf et al., 2021; Perry et al., 2022), states that changes
across tasks arise from sparse changes in the underlying causal mechanisms. While we do not operate
directly on structural causal models, our result arises by similarly considering the implications of
sparse changes in the causal graph defining a multi-task learning setting. We accomplish this by
first extending the theory of identifiability in supervised learning to the multi-task regression setting
for identifiability up to linear transformations (i.e., weak identifiability). We then propose a new
approach to identifying neural network representations up to permutations and scaling (i.e., strictly
strong identifiability), by leveraging the causal structures of the underlying latent factors for each task.
We emphasize that this is a stronger identifiability result than identifiability up to block permutations
and scaling (i.e., strong identifiability) as in prior works (Khemakhem et al., 2020a; Lu et al., 2022).

∗Equal contribution.
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We empirically validate our model’s ability to recover the ground-truth latent structure of the data
both in simulated settings where data is generated from our model and for real-world molecular
data. This contrasts with current state-of-the-art approaches, whose assumptions also fit our assumed
data generating process but which are difficult to train effectively and only identifiable up to block
permutations and scaling.

2 BACKGROUND AND RELATED WORK

The notion of optimizing for disentangled representations gained traction in the recent unsupervised
deep learning literature when it was proposed that this objective may be sufficient to improve desirable
attributes such as interpretability, robustness, and generalization (Bengio et al., 2013; Higgins et al.,
2017; Chen et al., 2016). However, the notion of disentanglement alone is not intrinsically well-
defined, as there may be many disentangled representations of the data which are seemingly equally
valid. Thus it is not clear a priori that this criterion is sufficient to achieve the above desiderata
(Locatello et al., 2019). In the identifiable representation learning literature, the correct disentangled
representation is assumed to be the one which corresponds to the ground-truth data generating process.
Thus, what is required is an identifiable representation, which must be equivalent to the causal one
for sufficiently expressive model classes. In the linear case, identifiability results exist in the classical
literature for ICA, which requires non-gaussianity assumptions on the sources for the data (Herault &
Jutten, 1986; Comon, 1994).

Many extensions of ICA to the non-linear case have been proposed, together with significant theoreti-
cal advances. In particular, Hyvarinen et al. (2019) extend this by assuming a conditionally factorized
prior over the latent factors given some observed auxiliary variables, and propose a contrastive
learning objective for recovering the inverse of the function which generated the observations. iVAE
(Khemakhem et al., 2020a) further extends this to the setting of noisy observations, drawing connec-
tions with variational autoencoders (Kingma & Welling, 2013) and enabling direct optimization via a
variational objective. Lachapelle et al. (2022) demonstrate that strong identifiability results remain
achievable under weaker conditions on the sufficient statistics of the prior if the data generating
process implies that the latent factors are governed by sparse mechanism shifts. Finally, iCaRL (Lu
et al., 2022) derives analogous results for the case where the prior over the latent factors is a more
general non-factorized exponential family distribution. However, the complex nature of the prior
requires score matching, which is difficult to optimize in practice.

While these works are generally concerned with the unsupervised and semi-supervised setting,
Khemakhem et al. (2020b); Roeder et al. (2021) discuss the identifiability properties of learned
representations in the case of single-task supervised classification, showing that the representations
obtained via the final hidden layer of a neural network are identifiable up to linear transformations,
which may not be a sufficiently restrictive equivalence class for practical applicability. While
Hyvärinen & Pajunen (1999); Khemakhem et al. (2020a) show that identifiability is not achievable
without any form of conditioning in the prior, Hälvä & Hyvarinen (2020); Hälvä et al. (2021);
Willetts & Paige (2021); Kivva et al. (2022) recently extend the results in unsupervised generative
models to the case of models with mixture model priors. This can be seen as providing analogous
identifiability results to prior work, without assumptions on the observability or the dimensionality
of the conditioning variable. Nonetheless, these results do not apply to the exact likelihood, and
it remains unclear to what extent the practical consistency and identifiability is achievable when
optimizing a surrogate objective.

In contrast, Brady et al. (2023) discuss identifiability results which arise from assumptions on the
structure of the mixing function, specifically targeting dual objectives of compositionality with respect
to partitions of the latent factors and invertibility of the mixing function. Thus, no distributional
assumptions are made on the prior. While this approach has similarities with our proposal by
introducing assumptions on how partitions of the latent space evolve with respect to well-defined
objects, we propose a general setting which is not restricted to representation learning in visual scenes.
Furthermore, by formalizing these assumptions within our probabilistic model, we eliminate the need
for auxiliary terms in our optimization objective.

Furthermore, concurrent work (Lachapelle et al., 2023; Fumero et al., 2023) has expanded this
area of research to consider the multi-task and meta-learning settings. However, their approach to
achieving permutation-identifiable representations relies on introducing heuristic sparsity constraints,
such as entropy and L2-norm regularizers, within a bi-level optimization objective, which turns out
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Figure 1: The workflow of our proposed method. Shapes are used to track the positions of the ground-
truth and recovered latent factors. Colors are used to differentiate between causal and spurious
latent factors. We assume that the observed variable is obtained by transforming the ground-truth
latent factors with some mixing function. We show that a multi-task regression network (MTRN)
can recover the ground-truth latent factors (i.e., data representations) up to linear transformation
and further propose a multi-task linear causal model (MTLCM) to reduce the equivalence class for
identifiability to permutations and scaling.

to be difficult to solve both in theory and in practice (Sinha et al., 2017). This contrasts with the
straightforward and principled optimization objective arising from our probabilistic model.

Finally, while many recent works have shown that spurious correlations are a failure case of deep
learning and focus on eliminating them (Rojas-Carulla et al., 2018; Arjovsky et al., 2019; Krueger
et al., 2021; Eastwood et al., 2022; Lu et al., 2022; Kirichenko et al., 2023), we leverage spurious
features to improve the robustness of the learned representations in the multi-task setting.

3 PROPOSED METHOD

This section proposes a novel method that leverages task structures in the multi-task regression setting
to identify the ground-truth data representations up to permutations and scaling.

3.1 PROBLEM FORMULATION AND ASSUMPTIONS

tx

zc

zs

y

Figure 2: Assumed
causal graph for the
underlying data gen-
erating process.

The assumptions of the ground-truth data generating process considered in
this paper are encapsulated in the causal graph shown in Figure 2, where
the input variable x ∈ X ⊆ Rn, the target variable1 y ∈ R and the task
index variable t ∈ {1, · · · , Nt} are observed variables, and the latent factors
z ∈ Rd (d ≤ n) are unobserved variables. We assume that x is generated by
transforming some (unobserved) ground-truth independent latent factors z∗
with some unknown bijective mixing function f∗ : Rd → X , i.e., x = f∗(z

∗).
To incorporate the sparse mechanism shift hypothesis across tasks, we further
assume that each task t has its own partition of the ground-truth latent factors
z∗ = z∗c ∪ z∗s into a set of causal latent factors z∗c and a set of spurious
latent factors z∗s , and such partitions potentially vary across tasks. The target
variable is assumed to be a weighted sum of the causal latent factors, i.e.,
y = (w∗

t )
Tz∗, where w∗

t ∈ Rd are the ground-truth regression weights for
task t which assign zero weights for the spurious latent factors. Note that
there may be latent factors that are uncorrelated with y in some tasks, which are treated as part of z∗c
but with zero regression weights. The spurious latent factors are assumed to be generated from the
target variable with a different linear correlation function in each task t. Our goal is to recover the
unobserved ground truth latent factors z∗ given an empirical task distribution p(t) over Nt training
tasks and an empirical data distribution p(x, y|t) for each task t ∈ {1, · · · , Nt}.

Overall, our proposed method consists of two stages as illustrated in Figure 1. In the first stage, we
train a multi-task neural network with a feature extractor shared across tasks and Nt task-specific
linear heads using maximum likelihood. We show that upon convergence, the representations learned
by the feature extractor are identifiable up to some invertible linear transformation. In the second stage,
we use the assumed causal structure across tasks to define a conditional prior over the underlying

1Without loss of generality, we assume that E(y) = 0. This can be achieved by standardizing y in practice.
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independent latent factors. We show that this enables simple maximum marginal likelihood learning
for recovering the linear transformation in the representations obtained in the first stage, which
reduces the identifiability class to permutations and scaling, and automatically disentangles and
identifies the causes and effects of the target variable from the learned representations.

3.2 STAGE 1: MULTI-TASK REGRESSION NETWORK (MTRN)

In the first stage, we train a multi-task regression network (MTRN) to recover the ground-truth latent
factors up to some invertible linear transformation.

Let fϕ,wt
(x) = wT

thϕ(x) be the output of an MTRN for task t, where wt ∈ Rd are the regression
weights in the linear head for task t, and hϕ(x) ∈ Rd is the data representation produced by the
feature extractor hϕ shared across all tasks with learnable parameters ϕ. As in typical non-linear
regression settings, the likelihood is assumed to be Gaussian pθ(y|x, t) = N (y|fϕ,wt(x), σ

2
r,t) with

mean modeled by an MTRN and variance fixed to some constant σ2
r,t, where θ := (ϕ,w1, · · · ,wNt

)
denotes all parameters in the MTRN. Following standard practice, we train the MTRN via maximum
likelihood estimation (MLE):

θ′ = argmax
θ

Ep(t)p(x,y|t)[log pθ(y|x, t)]. (1)

We first define linearly identifiable (or weakly identifiable) representations in the multi-task setting.
Definition 3.1 (Multi-task weak identifiability). Let θ and θ′ be two sets of parameters that satisfy (1).
Then, the data representations are linearly identifiable if there exists an invertible matrix A ∈ Rd×d

such that

pθ′(y|x, t) = pθ(y|x, t), ∀t,x, y =⇒ hϕ′(x) = Ahϕ(x). (2)

We show that data representations of MTRN are linearly identifiable if we have access to a set of
sufficiently diverse tasks measured by the linear dependencies among their regression weights.
Theorem 3.2. Let θ := (ϕ,w1, · · · ,wNt

) be a set of parameters that satisfy (1). Assume that
Span(Im(hϕ)) = Rd, i.e., the vectors in the image of hϕ span the whole Rd. Suppose that there
exist d tasks {ti}di=1 ⊆ {1, · · · , Nt} such that the set of regression weights {wti}di=1 are linearly
independent. Then, the data representations of MTRN are linearly identifiable.

The proof of Theorem 3.2 can be found in Appendix A. Using Theorem 3.2, it is straightforward to
show that MTRN trained with maximum likelihood estimation can recover the ground-truth data
representations up to some invertible linear transformation.
Corollary 3.3. Let h∗ := f−1

∗ : X → Rd be the inverse of the ground-truth mixing function f∗,
i.e., z∗ = h∗(x). Assume that Span(Im(h∗)) = Rd. Suppose that there exist d tasks {ti}di=1 ⊆
{1, · · · , Nt} such that the set of ground-truth regression weights {w∗

ti}
d
i=1 are linearly independent.

Suppose that MLE (1) converges to the optimal predictive likelihood, i.e.,

pθ′(y|x, t) = p∗(y|x, t) := N (y|(w∗
t )

Th∗(x), σ
2
r,t), ∀t,x, y. (3)

Then, the feature extractor hϕ′ is guaranteed to recover the ground truth data representations (or
latent factors) up to some invertible linear transformation A∗, i.e., hϕ′(x) = A∗h∗(x).

While Lachapelle et al. (2023)[Proposition 2.2] prove a similar proposition on MLE invariance to
linear feature transformations, their proposition is built upon their Assumption 2.1 that the learned
feature extractor hϕ′ is linearly equivalent to the ground truth feature extractor h∗. However, they
do not specify under what conditions this assumption will hold for the MLE objective; they only
specify conditions for the objective with a sparsity regularizer in their Section 3. In contrast, our
Corollary 3.3 explicitly reveals such conditions for MLE, i.e., Span(Im(h∗)) = Rd and the existence
of d independent ground-truth task-specific linear heads {w∗

ti}
d
i=1.

3.3 STAGE 2: MULTI-TASK LINEAR CAUSAL MODEL (MTLCM)

In the second stage, we fix the feature extractor hϕ′ learned in the first stage and denote its repre-
sentations by h := hϕ′(x). Corollary 3.3 suggests that h = A∗z

∗ for some invertible matrix A∗.
We propose a multi-task linear causal model (MTLCM) to recover the ground-truth latent factors up
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permutations and scaling from h based on our assumed causal graph in Figure 2. The core idea of the
MTLCM is to model the change in the causal and spurious latent factors across tasks with learnable
task-specific parameters.

Let T (t) = {ct,γt} be a collection of task-specific variables associated with task t, which are free
parameters to be learned from data, where ct ∈ {0, 1}d are the causal indicator variables which
determine the partition of z = zc ∪ zs for the given task t (i.e., ct,i = 1 indicates that zi is a causal
latent factor in task t and ct,i = 0 indicates that zi is a spurious latent factor in task t), and γt are the
coefficients used to generate the spurious latent factors from y for task t.

3.3.1 CONDITIONALLY FACTORIZED PRIOR GIVEN TASK AND TARGET VARIABLES

We assume that the causal latent factors zc are sampled from a standard Gaussian distribution a priori:

pT (zc|t) = N (zc|0, I), (4)

which depends on the task variable t since the causal indicator variable ct that determines which
subset of latent factors are causal varies across tasks.

According to the assumed data generating process, the target variable y is a linear function of the
data representations. Therefore, we assume that y is generated from zc via a linear Gaussian model
with the regression weights wt masked by the causal indicators ct:

pT (y|zc, t) = N (y|(wt ◦ ct)Tz, σ2
p), (5)

and that the spurious latent factors zs are generated from y via another linear Gaussian model:

pT (zs|y, t) = N (zs|yγt, σ2
sI). (6)

The structured conditional prior over all latent factors given t and y that follows our assumed causal
graph can be obtained by Bayes’ Rule:

pT (z|y, t) =
pT (zc|t)pT (y|zc, t)pT (zs|y, t)∫

pT (zc|t)pT (y|zc, t)pT (zs|y, t)dzsdzc
. (7)

Since no prior knowledge of regression weights wt is assumed, we marginalize out wt from
pT (y|zc, t) under an uninformative prior (i.e., an infinite-variance Gaussian prior). This makes
the structured conditional prior factorize over all latent factors (see Appendix D for a derivation):

pT (z|y, t) = pT (zc|t)pT (zs|y, t) = N (z|at,Λt), (8)

where the mean at and covariance Λt can be compactly expressed as:

at := yγt ◦ (1− ct) and Λt := diag(σ2
s(1− ct) + ct). (9)

3.3.2 LINEAR GAUSSIAN LIKELIHOOD

Since the data representation h learned in the first stage is equivalent to z∗ up to some linear
transformation, we assume a linear Gaussian likelihood with invertible linear transformation A:

pA(h|z) = N (h|Az, σ2
oI), (10)

where A is to be learned from data, which aims to recover the ground-truth linear transformation A∗
for the linearly identifiable representation h.

3.3.3 MAXIMUM MARGINAL LIKELIHOOD LEARNING

Let ψ = (A, T ) denote all parameters in an MTLCM, including the linear transformation A and
the task-specific parameters T (t) = {ct,γt} for all tasks t. The marginal likelihood of ψ under
MTLCM is given by

pψ(h|y, t) =
∫

pA(h|z)pT (z|y, t)dz = N (h|µt,Σt), (11)

where the mean µt and covariance Σt have closed-form expressions:

µt = yA(γt ◦ (1− ct)) and Σt = Adiag(σ2
s(1− ct) + ct)A

T + σ2
oI. (12)
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It is important to note that in the single-task setting, the conditional prior p(z|y) over the latent factors
z is non-factorized, since the causal latent factors zc are parents of the target variable y, which become
correlated when conditioning on y. In order to guarantee strong identifiability, iCaRL parameterizes
such non-factorized conditional priors using energy-based models optimized by variational inference
and score matching, which turns out to be difficult to train in practice due to variational overpruning
(Trippe & Turner, 2018) and high computational complexity (Hyvärinen & Dayan, 2005). In contrast,
by conditioning on the task t in addition to the target y and leveraging the change in the causal/spurious
latent factors across tasks, we obtain a conditionally factorized prior (8), which, together with the
linear Gaussian likelihood (10), allows us to use maximum marginal likelihood learning to recover
the ground-truth latent factors z∗ up to permutations and scaling from the linearly identifiable data
representations h = hϕ(x) learned in the first stage:

ψ′ = argmax
ψ

Ep(t)p(x,y|t)[log pψ(hϕ(x)|y, t)]. (13)

It is worth noting that our method has greater applicability than the methods that rely on a learned
probabilistic inverse qψ(z|x, y) to extract identifiable latent factors from data such as iVAE and
iCaRL, since qψ(z|x, y) depends on the target variable y which is often unknown at test time. In
contrast, our method does not depend on y at inference time, since the identifiable latent factors can
be obtained by applying the inverse linear transformation learned by the MTLCM to the linearly
identifiable data representations produced by the MTRN, i.e., z = A−1hϕ(x).

3.3.4 IDENTIFIABILITY THEORY

We first define the concept of strictly strong identifiability in the multi-task setting.
Definition 3.4 (Strictly strong identifiability). Let ψ and ψ′ be two sets of parameters that satisfy
(13). The latent factors are identifiable up to permutations and scaling if there exists a permutation
and scaling matrix P ∈ Rd×d such that

pψ′(h|y, t) = pψ(h|y, t), ∀h, t, y, =⇒ (A′)
−1

h = PA−1h. (14)

We emphasize that this strictly strong identifiability class is stronger than the strong identifiability
class as in prior works (Khemakhem et al., 2020a; Lu et al., 2022) which are only identifiable up to
block permutations and scaling of the latent factors transformed by the sufficient statistics:

T′(z) = PbT(z) + b, (15)

where each block i in the block matrix Pb permutes all elements that are functions of zi in the
sufficient statistics T of the conditional prior pT (z|u), and b is an extra offset vector. In contrast,
our strictly strong identifiability class is up to permutations and scaling of the actual ground-truth
latent factors z∗ and without the offset vector b, as shown in Equation (14).

We show that the latent factors of MTLCM are strictly strongly identifiable if there are sufficient
variations of the causal/spurious latent factors across tasks measured by the linear dependencies
among the natural parameters of their conditional priors.
Theorem 3.5. Let u := [y, t] denote the conditioning variable and k := 2d. Assume that the learned
and ground-truth linear transformations A and A∗ are invertible. Suppose that there exist k + 1
points u0,u1, · · · ,uk such that the matrix

L := [η(u1)− η(u0), · · · ,η(uk)− η(u0)] (16)

is invertible, where η(u) :=
[

Λ−1
t at

− 1
2 diag(Λt)

]
∈ Rk are the natural parameters of pT (z|u). Suppose

that maximum marginal likelihood learning (13) converges to the optimal marginal likelihood, i.e.,

pψ(h|y, t) = p∗(h|y, t) := N (h|µ∗
t ,Σ

∗
t ), ∀h, y, t, (17)

where µ∗
t and Σ∗

t are defined by Equation (12) but with the ground-truth linear transformation
A∗, ground-truth causal indicators c∗t and ground-truth spurious coefficients γ∗

t . Then, MTLCM is
guaranteed to recover the ground-truth latent factors up to permutations and scaling.

The proof of Theorem 3.5 can be found in Appendix B. The first part of the proof adapts the proof
technique from Khemakhem et al. (2020a) to show identifiability up to block permutations and
scaling. The second part of the proof is novel, which leverages the properties of the linear likelihood
to reduce the equivalent class to permutations and scaling of the actual ground-truth latent factors.
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Table 1: Identifiability performance for recovering the linearly transformed synthetic latent factors
measured by strong MCC (%).

#Causal 2 4

#Latent/Observed 3/3 5/5 10/10 20/20 50/50 5/5 10/10 20/20 50/50

iVAE 87.75±5.02 78.02±0.73 81.36±0.57 82.30±0.27 81.96±0.07 81.67±2.97 74.29±0.30 77.57±0.15 79.79±0.10
iCaRL 75.22±6.40 74.55±2.09 72.37±2.22 79.43±0.52 80.00±1.00 66.98±1.32 66.00±3.00 71.54±1.69 78.67±0.61

MT-iVAE 91.78±8.12 90.14±5.01 99.89±0.04 97.90±1.51 90.56±3.18 76.09±7.69 76.36±2.32 98.42±0.88 94.53±2.49
MT-iCaRL 81.09±3.37 71.12±2.97 76.13±0.53 79.26±1.00 81.30±0.84 61.55±1.26 64.04±1.08 72.79±1.92 79.54±0.59
MTLCM 99.95±0.01 99.96±0.01 99.77±0.16 99.70±0.16 98.97±0.55 99.95±0.01 99.71±0.21 99.51±0.36 99.14±0.27

Table 2: Identifiability performance for recovering the non-linearly transformed synthetic latent
factors measured by strong MCC (%). The weak MCC (%) for MTRN is also reported.

#Causal 4 8 12

#Latent/Observed 20/50 20/100 20/200 20/50 20/100 20/200 20/50 20/100 20/200

iVAE 73.11±1.13 77.42±0.20 76.95±0.31 65.18±1.49 68.66±0.14 69.05±0.17 58.70±0.33 60.33±0.27 59.85±0.31
iCaRL 56.70±3.49 63.29±4.26 58.64±2.83 57.09±2.41 60.66±2.74 61.02±2.43 52.93±2.13 58.80±1.81 54.40±2.54

MT-iVAE 71.78±1.45 80.14±0.37 73.89±2.98 65.44±1.60 69.31±0.35 68.56±0.34 55.79±1.61 60.56±0.23 59.61±0.30
MT-iCaRL 67.57±1.97 70.26±3.22 65.52±0.65 63.37±0.84 63.75±2.19 61.61±1.52 57.13±1.07 60.56±0.15 58.10±1.04
MTLCM 93.31±1.10 97.94±0.71 97.44±0.68 95.67±0.16 98.12±0.75 89.05±0.97 95.75±0.14 96.28±1.20 84.28±1.27

MTRN (weak) 89.38±0.71 96.15±0.91 96.19±0.87 93.96±0.22 97.63±0.79 87.75±0.99 95.14±0.17 96.12±1.27 83.70±1.22

4 EXPERIMENTS

This section empirically validates our model’s ability to recover canonical representations up to
permutations and scaling for both synthetic and real-world data. We contrast our model with the
more general identifiable models of iVAE (Khemakhem et al., 2020a) and iCaRL (Lu et al., 2022).
For a fair comparison, we also consider the multi-task extensions of iVAE and iCaRL, MT-iVAE
and MT-iCaRL, which include the task variable t in the conditioning variables u in their conditional
priors pT (z|u), with the task-specific parameter T (t) = {vt} to be learned from data, which is the
counterpart to T (t) = {ct,γt} in our MTLCM but has no explicit interpretations with respect to a
causal graph. Detailed model configurations can be found in Appendix C. Each experiment is run
until convergence and repeated across 5 random seeds to guarantee reproducibility.

4.1 SYNTHETIC DATA

We first validate our approach in the situation when the data generating process agrees with the
assumptions of our models. For each task, we first sample the causal indicator variables c∗t . The
causal latent factors z∗c are then sampled from a standard Gaussian prior. These are then linearly
combined according to random weights w∗

t to produce observed targets y with a task-dependent noise
corruption. Finally, the spurious variables z∗s are generated via different weightings γ∗

t of the target y.
This mirrors the causal data generating process described in Section 3. In Section 4.1.1, we generate
observed data using random linear transformations of the ground-truth latent factors. In Section 4.1.2,
we extend this to non-linear transformations parameterized by randomly initialized neural networks
and demonstrate that our approach can be combined with the multi-task identifiability result up to
linear transformations to recover permutations and scaling of the ground-truth. We also compare the
learned causal indicator variables ct with the ground-truth c∗t and the causal discovery results from
the conditional independence test (Chen, 2021; Lu et al., 2022) performed on the latent factors z
recovered by our model. Detailed synthetic data generating process can be found in Appendix E.

4.1.1 LINEAR CASE

We study the ability of our proposed multi-task linear causal model (MTLCM) to recover the latent
factors up to permutations and scaling via the Mean Correlation Coefficient (MCC) as in Khemakhem
et al. (2020a). The synthetic data is generated by sampling 200 tasks of 100 samples each. Each
task varies in its causal indicator variables c∗t , causal weights w∗

t , and spurious coefficients γ∗
t . We

then transform the ground-truth latent factors z∗ with a random invertible matrix A∗ shared across
all tasks to obtain linearly identifiable representations h. Identifiability in this setting is assessed by
directly computing the MCC score between the representations obtained from our MTLCM and the
ground-truth latent factors, which is referred to as strong MCC. Since the data is known to be linearly
identifiable, we use linear likelihoods for the baselines.

7
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Table 3: Identifiability performance for the latent factors learned on the superconductivity dataset
measured by strong MCC (%). The weak MCC (%) for MTRN is also reported. “−” indicates
divergence of optimization during training.

Latent dim 5 10 20 40 80

iVAE 32.87±1.16 33.21±1.04 30.68±0.39 37.41±0.84 45.52±0.81
iCaRL − 32.23±0.61 35.62±0.40 32.58±2.16 32.19±2.45

MT-iVAE 35.58±1.48 33.54±0.80 31.68±0.32 35.14±0.82 44.49±0.96
MT-iCaRL − − − − 42.26±2.33
MTLCM 98.90±0.03 96.93±0.12 84.56±1.11 46.31±0.34 48.94±2.16

MTRN (weak) 98.85±0.03 97.17±0.04 93.23±0.08 78.58±0.09 52.02±0.19

In Table 1, we show that MTLCM manages to recover the ground-truth latent factors from h up to
permutations and scaling, and the result is scalable as the number of latent factors and the number
of causal factors increase. In contrast, iVAE, iCaRL and their multi-task extensions underperform
our model by a large margin in most cases. We also find that for all tasks, the learned causal
indicator variables exactly match the ground-truth and the results from the conditional independence
test. Ablation study for the effects of the learnable parameters and the type of the ground-truth
transformation can be found in Appendix F.

4.1.2 NON-LINEAR CASE

A more general analysis of the identifiability of our proposed approach is to consider the extension
of the linear experiments to the setting of arbitrary transformations of the latent factors. For this,
we consider the case where random (non-linear) MLP neural networks are used to transform z∗ into
higher dimensional observations x. By Corollary 3.3, it is possible to recover linearly identifiable
representations h of the data by training standard multi-task regression networks (MTRNs). Identi-
fiability in this setting is assessed by first performing a Canonical Correlation Analysis (CCA) as
in Roeder et al. (2021), which linearly maps the obtained representations such that they maximize
the covariance with the ground-truth latent factors. The resulting mapped representations can thus
be compared with the ground-truth latent factors via the MCC score. This is referred to as weak
MCC, which quantifies the linear identifiability of the learned representations from MTRNs. We
further train our MTLCM on the linearly identifiable representations h obtained from the MTRN
to obtain identifiable representations up to permutations and scaling. Identifiability in this setting
is assessed by directly computing the MCC score between the representations obtained from our
MTLCM and the ground-truth latent factors as in Section 4.1.1 (i.e., strong MCC). We assess this
for various dimensionalities of the observed data and for different settings of the causal variables,
where we generate 500 tasks of 200 samples each to improve convergence of the multitask model.
The MTRN and the likelihoods in the baselines are parameterized by one-hidden-layer MLPs.

In Table 2, we find that the strong MCC for our MTLCM is able to match the weak MCC for the
MTRN. In contrast, the strong MCC for iVAE, iCaRL and their multi-task extensions significantly
underperform MTLCM. Again, we find that for all tasks, the learned causal indicator variables exactly
match the ground-truth and the results from the conditional independence test.

4.2 REAL-WORLD DATA

We further evaluate our model on two real-world molecular datasets. We assume that the data x
is generated by transforming some unknown ground-truth latent factors z∗ with some unknown
non-linear mixing function. Since z∗ are unknown to us, identifiability in this setting is assessed by
first training a model 5 times with different random seeds and initializations then computing the MCC
score between the data representations recovered by each pair of those 5 models, as in Khemakhem
et al. (2020b). As in Section 4.1, we employ the weak MCC score to assess the linear identifiability
of the representations h learned by the MTRN and the strong MCC score to assess the strictly strong
identifiability of the latent factors z recovered by our MTLCM and the baselines.

4.2.1 SUPERCONDUCTIVITY

The superconductivity dataset (Hamidieh, 2018) consists of 21, 263 superconductors. We consider
the tasks of regressing 80 readily computed target features such as mean atomic mass, thermal
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Figure 3: Identifiability performance for the latent factors learned on the QM9 dataset.

conductivity and valence of the superconductors from their chemical formulae, represented as discrete
counts of the atoms present in the molecule. The MTRN and the likelihoods in the baselines are
parameterized by MLP neural networks.

In Table 3, we find that the strong MCC for our MTLCM is greater than 0.96 and is able to match
the weak MCC for the MTRN when the dimensions of the latent representations are 5 and 10,
showing that our method manages to recover canonical latent representations for the superconductors.
Interestingly, the strong MCC score for the MTLCM decreases as we increase the number of latent
factors in the model, suggesting that there are at most 10-20 independent tasks out of the 80 targets
used for this data. In sharp contrast, all baseline models fail to recover identifiable latent factors for
the superconductors in all cases as their strong MCC scores do not exceed 0.4. In addition, there are
several settings where optimization diverged during training, since VAE-based models are generally
difficult to train on discrete inputs of chemical formulae.

4.2.2 QM9

The QM9 dataset (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014) is a commonly used benchmark
for molecular prediction tasks consisting of 134, 000 enumerated organic molecules of up to nine
heavy atoms together with a set of 12 calculated quantum chemical properties. In contrast to the more
artificial superconductivity dataset considered in Section 4.2.1, the QM9 dataset enables us to assess
the feasibility of achieving identifiable representations in the context of highly non-trivial quantum
chemical properties which are highly relevant to their pharmacological profile. Accurately modeling
this dataset requires us to capture potential three-dimensional atomic interactions, allowing us to
assess the translation of our theoretical results to more complex equivariant graph neural network
architectures. For this reason, we use an equivariant graph neural network (EGNN) (Satorras et al.,
2021) as the feature extractor for the MTRN. This enables the model to incorporate positional features
of each atom while exhibiting equivariance to their rotation, translation or reflection. Given that
the graph autoencoders proposed in Satorras et al. (2021) and prior works (Kipf & Welling, 2016;
Simonovsky & Komodakis, 2018; Liu et al., 2019) do not provide a means of jointly decoding the
feature and adjacency matrices, we do not consider the iVAE and iCaRL baselines for this dataset.

In Figure 3, the weak identifiability achieved from the MTRN implies that identifiability is achievable
up to eight latent features, suggesting there may be some redundancies between tasks, after which
there is a gradual decline in MCC. Nonetheless, the MTLCM is able to closely approximate the weak
MCC score up to eight latent factors, always surpassing a score of 0.9, demonstrating its ability to
recover permutation identifiable representations in the context of realistic molecular datasets.

9
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5 CONCLUSION

We have proposed a novel perspective on the problem of identifiable representations by exploring
the implications of explicitly modeling task structures. We have shown that this implies new
identifiability results, in particular for linear equivalence classes in the general case of multi-task
regression. Furthermore, while spurious correlations have been shown to be a failure case of deep
learning in many recent works, we have demonstrated that such latent spurious signals may in fact
be leveraged to improve the ability of a model to recover more robust disentangled representations.
In particular, we have shown that when the latent space is explicitly represented as consisting of a
partitioning of causal and spurious features per task, the linear identifiability result of the multi-task
setting may be reduced to identifiability up to simple permutations and scaling. Finally, we have
confirmed that the theoretical results hold both for the synthetic data where our model’s assumptions
are satisfied and for real-world molecular datasets of superconductors and organic small molecules.
We anticipate that this may reveal new research directions for the study of both causal representations
and synergies with multi-task methods.
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A PROOF OF THEOREM 3.2

Proof. By the assumption that the predictive likelihoods for the two sets of parameters θ′ and θ are
equal, we have

pθ′(y|x, t) = pθ(y|x, t), ∀t,x, y, (18)

=⇒ N (y|fϕ′,w′
t
(x), σ2

r,t) = N (y|fϕ,wt
(x), σ2

r,t), ∀t,x, y, (19)

=⇒ N (y|hϕ′(x)Tw′
t, σ

2
r,t) = N (y|hϕ(x)Twt, σ

2
r,t), ∀t,x, y. (20)

This implies that the means of the two Gaussian likelihoods on both sides are identical:

hϕ′(x)Tw′
t = hϕ(x)

Twt, ∀t,x, y. (21)

By the assumption that Span(Im(hϕ)) = Rd, there exist d inputs x1, · · · ,xd such that the matrix
H = [hϕ(x1), · · · ,hϕ(xd)] ∈ Rd×d is invertible. By the assumption that there exist d tasks {ti}di=1

such that the set of regression weights {wti}di=1 are linearly independent, we construct an invertible
matrix W = [wt1 , · · · ,wtd ] ∈ Rd×d. For hϕ′ , we similarly define H′ = [hϕ′(x1), · · · ,hϕ′(xd)] ∈
Rd×d and W′ = [w′

t1 , · · · ,w
′
td
] ∈ Rd×d.

Now, we evaluate Equation (21) at the d inputs x1, · · · ,xd and d tasks t1, · · · , td defined above,
which gives us the following linear equation:

(H′)TW′ = HW. (22)

Since both H and W are invertible by assumption and the weight matrices W and W′ do not depend
on the input x, the matrix W′ must be invertible.

Now, evaluating Equation (21) at the d tasks t1, · · · , td, we have

(W′)Thϕ′(x) = WThϕ(x), ∀x (23)

=⇒ hϕ′(x) = (W′)−TWThϕ(x), ∀x (24)
=⇒ hϕ′(x) = Ahϕ(x), ∀x. (25)

Note that we have shown that A := (W′)−TWT is invertible. This completes the proof.

B PROOF OF THEOREM 3.5

Proof. Let k := 2d and u := [y, t]. We first rewrite the density of the conditional prior in the
exponential family form:

pT (z|u) = Z(u)−1 exp
(
T(z)Tη(u)

)
, (26)

where Z(u) = (2π)d/2|Λt|0.5 exp
(
− 1

2a
T
tΛtat

)
is the normalizing constant, T(z) = [ z

z◦z ] ∈ Rk

are the sufficient statistics, and η(u) =
[

Λ−1
t at

− 1
2 diag(Λt)

]
∈ Rk are the natural parameters. We also

rewrite the likelihood pA(h|z) using the noise distribution pϵo(ϵo) = N (ϵo|0, σ2
oI):

pA(h|z) = N (h|Az, σ2
oI) = N (h−Az|0, σ2

oI) = pϵo(h−Az). (27)

Let A∗ be the ground-truth transformation matrix such that z∗ = A−1
∗ h, and T∗(t) = {c∗t ,γ∗

t } the
ground-truth task-specific variables associated with each task t. The proof starts off by using the fact
that we have maximized the marginal likelihood (11) of A and T for all tasks. This means that the
marginal likelihoods of the two models are identical:

pA,T (h|u) = pA∗,T∗(h|u), ∀h,u. (28)

The goal is to show that the latent factors z = A−1h recovered by our model and the ground-truth
latent factor z∗ = A−1

∗ h are identical up to permutations and scaling for all h.
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Starting from the equality of the two marginal likelihoods (28), we have

pA,T (h|u) = pA∗,T∗(h|u) (29)

⇐⇒
∫

pA(h|z)pT (z|u)dz =

∫
pA∗(h|z)pT∗(z|u)dz (30)

⇐⇒
∫

pϵo(h−Az)pT (z|u)dz =

∫
pϵo(h−A∗z)pT∗(z|u)dz (31)

⇐⇒
∫

pϵo(h− h̄)pT (A
−1h̄|u) det(A)−1dh̄ =

∫
pϵo(h− ĥ)pT∗(A

−1
∗ ĥ|u) det(A∗)

−1dĥ

(32)

⇐⇒
∫

pϵo(h− h̄)p̃A,T ,u(h̄)dh̄ =

∫
pϵo(h− ĥ)p̃A∗,T∗,u(ĥ)dĥ (33)

⇐⇒ (pϵo ∗ p̃A,T ,u)(h) = (pϵo ∗ p̃A∗,T∗,u)(h) (34)
⇐⇒ F [pϵo ](ω)F [p̃A,T ,u](ω) = F [pϵo ](ω)F [p̃A∗,T∗,u](ω) (35)

⇐⇒ F [p̃A,T ,u](ω) = F [p̃A∗,T∗,u](ω) (36)
⇐⇒ p̃A,T ,u(h) = p̃A∗,T∗,u(h) (37)

⇐⇒ pT (A
−1h|u) det(A)−1 = pT∗(A

−1
∗ h|u) det(A∗)

−1 (38)

⇐⇒ T(A−1h)Tη(u)− logZ(u)− log det(A) = T(A−1
∗ h)Tη∗(u)− logZ∗(u)− log det(A∗),

(39)

where

• Equation (32) follows by the definition h̄ := Az, ĥ := A∗z,

• Equation (33) follows by the definition p̃A,T ,u(h̄) := pT (A
−1h̄|u) det(A)−1,

• ∗ in Equation (34) denotes the convolution operator,

• F in Equation (35) denotes the Fourier transform operator,

• Equation (36) follows since the characteristic function F [pϵo ] of the Gaussian noise ϵo is
nonzero almost everywhere.

Now we evaluate Equation 39 at u = u0,u1, · · · ,uk from our assumption to obtain k + 1 such
equations and subtract the first equation from the remaining k equations to obtain the following k
equations:

T(A−1h)T(η(ul)− η(u0)) + log
Z(u0)

Z(ul)
= T(A−1

∗ h)T(η∗(ul)− η∗(u0)) + log
Z∗(u0)

Z∗(ul)
, (40)

where l = 1, · · · , k. Putting those k equations in the matrix-vector form gives

LTT(A−1h) = LT
∗T(A−1

∗ h) + q, (41)

where ql = log Z∗(u0)Z(ul)
Z∗(ul)Z(u0)

, L is the invertible matrix defined in the assumption, and L∗ is similarly
defined for the second model. Since L is invertible, we can left multiply Equation (41) by L−T to
obtain

T(A−1h) = MT(A−1
∗ h) + r, (42)

where M = L−TLT
∗ and r = L−Tq. We note that our assumption only says L is invertible and tells

us nothing about L∗. Therefore, we need to show that M is invertible. Let hl := Azl, l = 0, · · · , k.
We evaluate Equation (42) at these k + 1 points to obtain k + 1 such equations, and subtract the first
equation from the remaining k equations. This gives us

[T(z1)−T(z0), · · · ,T(zk)−T(z0)] = M[T(A−1
∗ h1)−T(A−1

∗ h0), · · · ,T(A−1
∗ hk)−T(A−1

∗ h0)]. (43)

We denote Equation (43) by R := MR∗. We need to show that for any given z0, there exist k
points z1, · · · , zk such that the columns of R are linearly independent. Suppose, for contradiction,
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that the columns of R would never be linearly independent for any z1, · · · , zk. Then the function
g(z) := T(z) − T(z0) would live in a k − 1 or lower dimensional subspace, and therefore we
would be able to find a non-zero vector λ ∈ Rk orthogonal to that subspace. This would imply
that (T(z)−T(z0))

Tλ = 0 and thus T(z)Tλ = T(z0)
Tλ = const, ∀z, which contradicts the fact

that our conditionally factorized multivariate Gaussian prior pT (z|u) is strongly exponential (see
Khemakhem et al. (2020a) for the definition). This shows that there exist k points z1, · · · , zk such
that the columns of R are linearly independent for any given z0. Therefore, R is invertible. Since
R = MR∗ and M is not a function of z, this tells us that M must be invertible.

Now that we have shown that M is invertible, the next step is to show that M is a block transformation
matrix. We define a linear function l(z) = A−1

∗ Az. Now, Equation (42) becomes

T(z) = MT(l(z)) + r. (44)

We first show that the linear function l is a point-wise function. We differentiate both sides of the
above equation w.r.t. zs and zt (∀s ̸= t) to obtain:

∂T(z)

∂zs
= M

d∑
i=1

∂T(l(z))

∂li(z)

∂li(z)

∂zs
, (45)

∂2T(z)

∂zs∂zt
= M

d∑
i=1

d∑
j=1

∂2T(l(z))

∂li(z)∂lj(z)

∂lj(z)

∂zt

∂li(z)

∂zs
+M

d∑
i=1

∂T(l(z))

∂li(z)

∂2li(z)

∂zs∂zt
. (46)

Since the prior pT (z|u) is conditionally factorized, the second-order cross derivatives of the sufficient
statistics are zeros. Therefore, the second equation above can be simplified as follows:

0 =
∂2T(z)

∂zs∂zt
(47)

= M

d∑
i=1

∂2T(l(z))

∂li(z)2
∂li(z)

∂zt

∂li(z)

∂zs
+M

d∑
i=1

∂T(l(z))

∂li(z)

∂2li(z)

∂zs∂zt
(48)

= MT′′(z)l′s,z(z) +MT′(z)l′′s,z(z) (49)

= MT′′′(z)l′′′s,z(z), (50)

where

T′′(z) =

[
∂2T(l(z))

∂l1(z)2
, · · · , ∂

2T(l(z))

∂ld(z)2

]
∈ Rk×d, (51)

l′s,z(z) =

[
∂l1(z)

∂zt

∂l1(z)

∂zs
, · · · , ∂ld(z)

∂zt

∂ld(z)

∂zs

]T

∈ Rd, (52)

T′(z) =

[
∂T(l(z))

∂l1(z)
, · · · , ∂T(l(z))

∂ld(z)

]
∈ Rk×d, (53)

l′′s,z(z) =

[
∂2l1(z)

∂zs∂zt
, · · · , ∂

2ld(z)

∂zs∂zt

]T

∈ Rd, (54)

T′′′(z) = [T′′(z),T′(z)] ∈ Rk×k, (55)

l′′′s,z(z) = [l′s,z(z)
T, l′′s,z(z)

T]T ∈ Rk. (56)

By Lemma 5 in Khemakhem et al. (2020a) and the fact that k = 2d, we have that the rank of
T′′′(z) is 2d and thus it is invertible for all z. Since M is also invertible, we have that MT′′′(z) is
invertible. Since MT′′′(z)l′′′s,z(z) = 0, it must be that l′′′s,z(z) = 0, ∀z. In particular, this means that
l′s,z(z) = 0, ∀s ̸= t for all z, which shows that the linear function l(z) = A−1

∗ Az is a point-wise
linear function.

Now, we are ready to show that M is a block transformation matrix. Without loss of generality,
we assume that the permutation in the point-wise linear function l is the identity. That is, l(z) =
[l1z1, · · · , ldzd]T for some linear univariate scalars l1, · · · , ld ∈ R. Since A and A∗ are invertible,
we have that l−1(z) = [l−1

1 z1, · · · , l−1
d zd]

T. Define

T̄(l(z)) := T(l(z)) +M−1r (57)
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and plug it into Equation (44) gives:

T(z) = MT̄(l(z)). (58)

We then apply l−1 to z at both sides of the Equation (58) to obtain

T(l−1(z)) = MT̄(z). (59)

Since l is a point-wise function, for a given q ∈ {1, · · · , k} we have that

0 =
∂T(l−1(z))q

∂zs
=

k∑
j=1

Mq,j
∂T̄(z)j
∂zs

, for any s such that q ̸= s and q ̸= 2s. (60)

Since the entries in T̄(z) are linearly independent, it must be that Mq,j = 0 for any j such that
∂T̄(z)j
∂zs

̸= 0. This includes the entries j in T̄(z) which depend on zs (i.e., j = s and j = 2s). Note
that this holds true for any s such that q ̸= s and q ̸= 2s. Therefore, when q is the index of an entry
in the sufficient statistics T that corresponds to zi (i.e., q = i or q = 2i, and i ̸= s), the only possible
non-zero Mq,j for j are the ones that map between Ti(zi) and T̄i(li(zi)), where Ti are the factors
in T that depend on zi and T̄i are similarly defined. This shows that M is a block transformation
matrix for each block [zi, z

2
i ] with scaling factor li. That is, the only possible nonzero element in M

are Mi,i, Mi,2i, M2i,i, and M2i,2i for all i ∈ {1, · · · , d}.

Furthermore, for any i ∈ {1, · · · , d} we have that

l−1
i =

∂T(l−1(z))i
∂zi

=

k∑
j=1

Mi,j
∂T̄(z)j
∂zi

= Mi,i + 2Mi,2izi, (61)

2l−1
i zi =

∂T(l−1(z))2i
∂zi

=

k∑
j=1

M2i,j
∂T̄(z)j
∂zi

= M2i,i + 2M2i,2izi. (62)

This implies that Mi,2i = 0 and M2i,i = 0 for any i ∈ {1, · · · , d}, and Mi,i = l−1
i for i ∈

{1, · · · , k}, which reduces M from a block transformation matrix to a permutation and scaling
matrix. In particular, this means that the latent factors zi are identifiable up to permutations and
scaling, with the transformation matrix P ∈ Rd×d defined by the first d rows and d columns of M:

A−1h = PA−1
∗ h+ r ⇐⇒ h = AP(A−1

∗ h) +Ar. (63)

Since h is linearly identifiable by assumption, it must be that Ar = 0 by Definition 3.1. Since A is
invertible by assumption, it must be that r = 0. Therefore, we have

A−1h = PA−1
∗ h. (64)

This completes the proof.

C MODEL CONFIGURATIONS

In MTRN, the learnable parameters are the feature extractor parameters ϕ and the task-specific
regression weights wt for all tasks t. These model parameters are learned by maximum likelihood as
defined in Equation (1).

In MTLCM, the learnable parameters are the linear transformation A, the causal indicators ct for all
tasks t, and the spurious coefficients γt for all tasks t. These are free parameters learned by maximum
marginal likelihood as defined in Equation (13). The binary causal indicators ct are parameterized
as free parameters squashed to [0, 1] by the sigmoid function. To allow for gradient update of ct,
we do not binarize the output of the sigmoid function during training; instead, we use a soft version
c̃t ∈ [0, 1]d during training. In practice, we find that this works well and all learned values for ct,1
are very close to either 0 or 1. In the synthetic data setting, the learned causal indicators match the
ground-truth values. In practice, we find that fixing the spurious noise variance σs to 0.01 and the
observational noise variance σ0 to 0.1 works well for all experiments.

For a fair comparison, we also consider the multi-task extensions of iVAE and iCaRL, MT-iVAE
and MT-iCaRL, which include the task variable t in the conditioning variables u in their conditional
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priors pT (z|u), with the task-specific parameter T (t) = {vt} to be learned from data, which is the
counterpart to T (t) = {ct,γt} in our MTLCM but has no explicit interpretations with respect to a
causal graph. We set dim(vt) = dim(ct) + dim(γt) to ensure the same degree of flexibility as our
MTLCM. The task-specific parameters vt are free parameters learned together with other parameters
in these models by optimizing their variational/score matching objective.

D DETAILS ON THE UNINFORMATIVE PRIOR OVER THE REGRESSION
WEIGHTS

Since no prior knowledge is assumed for the task-specific regression weights wt ∈ Rd, we put an
uninformative prior over wt ∈ Rd for all tasks t:

p(wt) ∝ 1. (65)

Since the support of wt is Rd, such an uninformative prior can be thought of as a Gaussian prior with
infinite variance whose density is zero almost everywhere.

We marginalize out wt from pT (y|zc, t) = N (y|(wt ◦ ct)Tz, σ2
p) under the uninformative prior over

wt, which makes the conditional prior over y uninformative:

p′T (y|zc, t) =
∫

pT (y|zc, t)p(wt)dwt ∝ 1. (66)

Therefore, we have

pT (z|y, t) =
pT (zc|t)p′T (y|zc, t)pT (zs|y, t)∫

pT (zc|t)p′T (y|zc, t)pT (zs|y, t)dzsdzc
(67)

=
pT (zc|t)pT (zs|y, t)∫

pT (zc|t)pT (zs|y, t)dzsdzc
(68)

= pT (zc|t)pT (zs|y, t). (69)

Since pT (zc|t) factorizes over the causal latent factors and pT (zs|y, t) factorizes over the spurious
latent factors, the structured conditional prior pT (z|y, t) factorizes over all latent factors z.

E EXPERIMENT SETTINGS FOR THE SYNTHETIC DATA

We detail the precise process for the data generation of the synthetic data for both the linear and
non-linear experiments below. Algorithm 1 details the full data generation process, Table 4 details
the experiment hyperparameters used in the linear setting and Table 5 details the hyperparameters
used in the non-linear setting. The transformation in the linear experiments corresponds to either
the identity, an orthogonal or a random matrix of size latent dim× latent dim, while in the non-
linear experiments it corresponds to a randomly initialized neural network with the specified hidden
dimensions and relu activations.

F ABLATION STUDY FOR THE LINEAR SYNTHETIC DATA

In Figure 4, we contrast the effect of training only the linear transformation matrix A in our MTLCM
when the ground-truth task variables ct,γt are known to the model, with the more general setting of
learning all parameters jointly via maximum marginal likelihood. We assess the convergence of our
multi-task linear causal model across 5 random seeds for increasingly complex linear transformations
(identity, orthogonal, random) for data consisting of 10 latent factors with two causal features.
Rather than inhibiting convergence, we find that training all parameters jointly leads to improved
performance, possibly due to additional flexibility in the parameterizations of the model. For all types
of linear transformations, our model succeeds in recovering the ground-truth latent factors.
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Algorithm 1 Pseudocode for the data generating process in the synthetic data experiments
Require: l the number of latent features
Require: Nc the number of causal features
Require: Nt the number of tasks
Require: Ns the number of points per task
Require: Ground-truth transformation F (random invertible matrix or random MLP)

Let σs, σo = 0.1, 0.01
for Each task t do

Sample l binary causal feature indicators I1, I2, · · · , Il
Sample l weights wt

j from U(0, 1)
Sample spurious coefficients γj from U(−1, 1) for all Ij = 0.
for each data point with index i in this task do

Sample causal features Zj
i ∼ N (0, σ2

s) for all Ij = 1
Sample σp ∼ U(2, 3)
Obtain target Y =

∑
j|Ij=1 Z

j
i +N (0, σ2

p)

Obtain spurious features Zj
i = γj ∗ Y +N (0, σ2

s) for all Ij = 0
Obtain observed features via the transformation xt

i = F (zti ) +N (0, σ2
oI)

end for
end for

Table 4: Experimental Settings for the Linear Synthetic Data

Latent Dim 3, 5, 10, 20, 50, 100
Num Causal 2, 4

Seed 1, 2, 3, 4, 5
Matrix Type random

Table 5: Experimental Settings for the Non-Linear Synthetic Data

Observation Dim 50, 100, 200
Encoder Network Num Hidden 1
Encoder Network Hidden Dim 2 * Observation dim

Latent Dim Observation dim
Num Causal 4, 8, 12

Seed 1, 2, 3, 4, 5

0 1000 2000 3000 4000 5000 6000
Epoch

0.70

0.75

0.80

0.85

0.90

0.95

1.00

M
C

C

Matrix type = identity

0 1000 2000 3000 4000 5000 6000
Epoch

Matrix type = orthogonal

0 1000 2000 3000 4000 5000 6000
Epoch

Matrix type = random

Ground truth scaled
No ground truth scaled
Ground truth not scaled
No ground truth not scaled

Figure 4: Convergence of the model in the case of transformations of the latent factors for identity,
orthogonal and arbitrary linear transformations. Standardizing the features accelerates convergence.
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