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Abstract

In this thesis, we study causal representation learning for latent space optimization, which
allows for robust and efficient generation of novel synthetic data with maximal target value.
We assume that the observed data was generated by a few latent factors, some of which are
causally related to the target and others of which are spuriously correlated with the target
and confounded by an environment variable. Our proposed method consists of three steps,
which exploits the structure of the causal graph that describes the assumed underlying data
generating process. In the first step, we recover the true data representation (i.e., the latent
factors from which the observed data originated). We obtain novel identifiability theory,
showing that the true data representation can be recovered up to simple transformations by a
generalized version of identifiable variational auto-encoders. In the second step, we identify
the causal latent factors of the target, for which we propose a practical causal inference
scheme that employs (conditional) independence tests and causal discovery algorithms. Our
method does not require having access to the true environment variable, which overcomes
a major limitation of existing causal representation learning approaches in the literature.
In the final step, we query latent points that correspond to data points with high target
values by intervening upon the causal latent factors using standard latent space optimization
techniques. We empirically evaluate and thoroughly analyze our method on three different
tasks, including a chemical design task. We show that our method can successfully recover
the true data representation in the finite data regime and correctly identify the causal latent
factors of the target, which results in state-of-the-art performance for black-box optimization.
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Chapter 1

Introduction

1.1 Motivation

Deep neural networks are powerful tools for learning useful representation (Bengio et al.,
2013), which is attributed to the successes of various downstream tasks in computer vision
(Chen et al., 2020; Krizhevsky et al., 2012), natural language processing (Devlin et al., 2018;
Mikolov et al., 2013; Vaswani et al., 2017), computational chemistry (Gómez-Bombarelli
et al., 2018; Jumper et al., 2021), and so on. However, the data representation learned
by deep neural networks usually only captures statistical associations between variables
and completely ignores their causal relationships. Without knowing the underlying causal
mechanism, deep learning models tend to exploit easy-to-fit spurious correlations within the
training data to solve downstream tasks and thus often fail to generalize to out-of-distribution
settings at test time (Lu et al., 2021). To see this, we consider a famous hypothetical task
of camel-cow image classification (Beery et al., 2018). Imagine that we are given a set
of labelled images of camels and cows. Unfortunately, due to selective biases, most of
the pictures of camels were taken in deserts, while many pictures of cows were taken on
green pastures (see Figure 1.1). If we train a convolutional neural network on this dataset to
solve the classification problem, it turns out that the model would learn to use the spurious
correlation between the landscape color in the image and the class label of the image to
make predictions. As a results, this model would perform poorly on a test set collected in
a different environment (e.g., a test set in which many pictures of cows were taken in beaches).

Arjovsky et al. (2019) formulate a scenario of causal representation learning that takes into
account the impact of environment e. In this setting, the joint distribution of the observed
data x and the target of interest y varies across different environments, but there exists a
causal relationship between some features of x and y which remains invariant across dif-
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Fig. 1.1 Typical training images for the hypothetical camel-cow classification task.

ferent environments. In the camel-cow classification example, the relationship between
the landscape color in the image and the class label of the image changes across different
environments, but the causal relationship between the shape of the animal and the class label
is invariant across different environments. In this thesis, we aim to learn and identify such in-
variant causal representation, since it allows for efficient and robust inference, reasoning and
prediction in downstream tasks and has the ability to generalize to out-of-distribution settings.

While most works concerning causal representation learning in the literature focus on learning
invariant predictors (Arjovsky et al., 2019; Lu et al., 2021; Mitrovic et al., 2020; Muandet
et al., 2013), we instead consider black-box optimization as our downstream task. The goal
is to generate novel synthetic data with maximal target value, staring from a given initial
dataset. We argue that causal representation learning can be naturally combined with latent
space optimization which optimizes in the latent space of a deep generative model. We will
demonstrate this on a couple of black-box optimization problems, including a chemical design
task, on which we achieve robust, efficient, and state-of-the-art optimization performance.

1.2 Thesis Contributions

In this thesis, we present a framework for efficient and robust latent space optimization
using causal representation learning, based on the ideas from Lu et al. (2021) and Tripp et al.
(2020). Our main contributions are as follows:

• We present novel identifiability theorems for identifiable VAEs with non-factorized
conditional priors1, which enables us to recover the true underlying data representation
with reference to the target.

1This contributes to the proofs of Theorem 4 and Theorem 5 in Lu et al. (2021), helping address an issue in
the first version of this paper.
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• We propose a simple yet effective practical causal inference scheme for identifying
causal latent factors from the true data representation.

• Our proposed framework does not require having access to the ground truth envi-
ronment variable, which overcomes a major limitation of existing invariant causal
representation learning methods in the literature.

• We demonstrate the identifiability of our generalized identifiable VAEs on a syn-
thetic dataset and perform a thorough analysis of our proposed framework on image
optimization and chemical design tasks.

1.3 Thesis Outline

The structure of the remainder of this thesis is as follows.

Chapter 2 establishes the theoretical background for this thesis, introducing the concepts and
ideas of 1) variational auto-encoders and its identifiability issues, 2) causal inference and
causal representation learning, and 3) latent space optimization for black-box optimization.
This chapter is concluded by a formulation of the research problem considered in this thesis,
which brings together the three seemingly irrelevant topics discussed in this chapter.

Chapter 3 presents a novel inference and learning scheme for deep latent variable models with
non-factorized conditional priors, called generalized identifiable variational auto-encoders.
Novel identifiability theorems are developed, showing that this scheme is guaranteed to
recover the true latent variable up to simple transformations. The proofs of these theorems
can be found in Appendix B.

Chapter 4 describes a framework for latent space optimization with causal representation
learning, which employs 1) generalized identifiable variational auto-encoders for recovering
the true data representation, 2) a newly proposed practical causal inference scheme for
identifying the causal latent factors of the target from the true data representation, and 3)
latent space optimization techniques which works with causal latent factors.

Chapter 5 presents empirical evaluation and analysis of our framework on 1) a synthetic
dataset, 2) an image optimization task, and 3) a chemical design task, which shows that our
method can successfully recover the true data representation in the finite data regime and
correctly identify the causal latent factors of the target, which results in robust, efficient, and
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state-of-the-art black box optimization performance.

Chapter 6 summarizes the findings in this thesis and point out some interesting directions for
future work.



Chapter 2

Background

In this chapter, we introduce some fundamental concepts, ideas and tools in machine learning
and statistics, upon which the rest of the thesis will build. We also formulate the research
problem considered and state any necessary assumptions needed in this thesis.

2.1 Variational Auto-Encoders

There have been many developments and advances in leveraging probabilistic methods and
deep learning for generative modelling and representation learning. In this thesis, we will
use variational auto-encoders (VAEs) (Kingma and Welling, 2013; Rezende et al., 2014) as
a tool for recovering the true data representation (i.e., the true latent variable from which
the observed variable originated). In this section, we give a brief introduction to the VAE
framework and discuss the identifiability issue of deep latent variable models (DLVMs)
trained by VAEs.

2.1.1 The VAE Framework

Let x ∈X ⊂ Rd be an observed variable and z ∈Z ∈ Rn a latent variable (n≤ d). VAEs
provide an efficient framework for inference and learning in DLVMs, for which the joint
distribution is given by

pθ (x,z) = pθ (x |z)pθ (z), (2.1)

where pθ (z) is the prior distribution over the latent variable, the likelihood pθ (x |z) :=
pε(x− f(z)), defined by an independent noise distribution pε(ε) and a mixing function
f : Z →X parameterized by a neural network, specifies the generating process x = f(z)+ε ,
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and θ ∈ Θ are the parameters of the model. This induces a rich class of flexible models,
which allows us to model highly complex marginal distributions over the observed variable:

pθ (x) =
∫
Z

pθ (x |z)pθ (z)d z . (2.2)

In this model, the true data generating process of a dataset D = {x(1), · · · ,x(N)} can be
described as drawing z(i)∗ ∼ pθ

∗(z) and x(i) ∼ pθ
∗(x |z(i)∗ ) independently for each i, where z(i)∗

can be seen as the true but unobserved underlying representation of x(i), and θ
∗ are the true

parameters which are unknown to us. It is non-trivial to learn the parameters θ of this model
from a set of observed data D , since one has to work with the marginal distribution pθ (x)
(2.2), which is given by an intractable integral due to the neural network used for modelling
the mixing function f in the likelihood pθ (x |z).

The VAE framework instead works with a tractable variational lower bound F of the
intractable log marginal likelihood:

Ep(x)[log pθ (x)]≥ Ep(x)
[
log pθ (x)−KL(qφ (z |x)||pθ (z |x))

]
(2.3)

= Ep(x)

[
Eqφ (z |x)[log pθ (x |z)]−KL(qφ (z |x)||pθ (z))

]
(2.4)

:= F (θ ,φ), (2.5)

where p(x) is the (unknown) true data distribution, qφ (z |x) is a variational approximation to
the intractable posterior distribution over latent variable pθ (z |x), and the inequality in (2.3)
holds by the non-negativity of KL divergence. The KL divergence term in (2.4) regularizes
the variational posterior to be close to the prior, and the expected likelihood term measures the
(negative) expected reconstruction error. Note that the VAE framework employs amortized
inference, since the variational parameters φ have a fixed size and are shared across all
data points. Also, a mean-field approximation is used for the variational posterior, which
is defined by a factorized Gaussian distribution qφ (z |x) = N (z; µφ (x),diag(σφ (x)2)) with
mean and variance parameterized by neural networks.

In practice, we resort to Monte Carlo (MC) methods to estimate the variational lower bound
(2.4). In each iteration, p(x) is estimated by the empirical data distribution given by a
mini-batch D̃ sampled from D , and the expectation over qφ (z |x) is estimated using a single
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sample z∼ qφ (z |x). This gives us an unbiased estimator of the variaitonal lower bound:

F (θ ,φ)≈ 1
|D̃ | ∑

x∈D̃

[
log pθ (x |z)− logqφ (z |x)+ log pθ (z)

]
, z∼ qφ (z |x). (2.6)

The parameters θ and φ are learned jointly by maximizing (2.6) using stochastic gradient-
based optimization techniques such as Adam (Kingma and Ba, 2014). In order to be able
to compute the gradient of (2.6) with respect to φ , we employ the reparameterization trick
(Kingma and Welling, 2013; Rezende et al., 2014) to generate samples from qφ (z |x), which
considers z ∼ qφ (z |x) as being transformed from a random noise η ∼ p(η) through a
differentiable and invertible deterministic function gφ (η ,x), where η is independent of φ ,
θ and x. This enables us to compute the gradient with respect to φ through samples of
qφ (z |x). The resulting gradient estimator turns out to be unbiased and of low variance. For
the factorized Gaussian variational posterior, we use a standard Gaussian noise η ∼N (0,I)
with a location-scale transformation z = µφ (x)+σφ (x)⊙η , where ⊙ denotes the element-
wise product operator.

2.1.2 Identifiability

Although the VAE framework allows us to learn a full generative model pθ (x,z)= pθ (x |z)pθ (z)
and a variational posterior qφ (z |x)≈ pθ (z |x), Khemakhem et al. (2020a) points out that it
is only guaranteed to give a good estimate of the true marginal distribution over the observed
variable after optimization:

pθ (x)≈ pθ
∗(x). (2.7)

In other words, all the other learned distributions are meaningless in general, and there is no
guarantee that the true latent variable from which the observed variable originated can be
recovered. This is known as lack of identifiability in DLVMs (Hyvärinen and Pajunen, 1999),
as the true joint distribution pθ

∗(x,z) cannot be identified when an unconditional prior is
used. We illustrate this by a simple example here and refer to Khemakhem et al. (2020a) for
proofs of general unidentifiability results. Consider the prior pθ (z) = N (z;0,I) often used
in the VAE framework, which is invariant to rotation. In this case, arbitrarily rotating the
prior, which can be done in the first layer of the neural network that parameterizes the mixing
function f, will not change the marginal distribution pθ (x) but will change the posterior
pθ (z |x), since each value of x now comes from a different value of z than before due to the
rotation operation. This means that the model is unidentifiable. Formally, identifiability of
deep generative models is defined to be some equivalence relation on the parameter space Θ:



8 Background

Definition 1 (Identifiability). Let Θ be the domain of the parameters θ . Let ∼ be an
equivalence relation on Θ. A deep generative model is said to be ∼–identifiable if

pθ (x) = p
θ̃
(x), ∀x ∈X =⇒ θ ∼ θ̃ . (2.8)

Each element in the quotient space Θ\ ∼ is called an identifiability class.

Definition 1 tells us that two different sets of parameters θ and θ̃ leading to the same
marginal distribution over the observed variable should imply that they are equivalent in
some sense. For example, if the equivalence relation is equality and a perfect marginal
distribution pθ (x) = pθ

∗(x) is learned, then this would imply that the true joint distribution
pθ (x,z) = pθ

∗(x,z), true prior pθ (z) = pθ
∗(z), true likelihood pθ (x |z) = pθ

∗(x |z), and
true posterior pθ (z |x) = pθ

∗(z |x) are all recovered. In the VAE framework, assuming that
the variational family covers a large class of distributions including pθ

∗(z |x), this would
also imply that the variational posterior qφ (z |x) can recover the true data representation z∗.

In practice, it is only possible to learn identifiable models up to simple transformations.
Khemakhem et al. (2020a) propose a class of identifiable DLVMs (up to simple affine
transformations), which requires a factorized exponential family prior over the latent variable
that is conditioned on a concurrently observed and sufficiently informative auxiliary variable
u (Hyvarinen et al., 2019):

pT,λ (z |u) =
n

∏
i=1

Qi(zi)

Zi(u)
exp(⟨Ti(zi),λ i(u)⟩), (2.9)

where the base measure Qi(zi), normalizing constant Zi(u), sufficient statistics Ti(zi), and
natural parameters λ i(u) are all factorized. The auxiliary variable u can be, for instance,
time index in a time series (Hyvarinen and Morioka, 2016), data in a previous time step in a
time series, some form of (possibly imperfect and noisy) label, and so on. We refer to the
corresponding inference and learning scheme as identifiable VAE (iVAE). Unlike Hyvarinen
et al. (2019) which resorts to heuristic contrastive learning, iVAE is a more principled scheme
in the sense that it performs maximum likelihood learning as in the standard VAE framework.
Note that iVAE is also applicable to normalizing flows (Rezende and Mohamed, 2015)
(Var(ε) = 0) and is closely related to independent component analysis (ICA) (Comon, 1994;
Hyvarinen et al., 2019) (n = d). ICE-BeeM (Khemakhem et al., 2020b) is a similar but
slightly more general class of identifiable DLVMs, which assumes that the conditional prior
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has a general non-factorized base measure and a factorized exponential component:

pT,λ (z |u) =
Q(z)
Z(u)

exp

(
n

∑
i=1
⟨Ti(zi),λ i(u)⟩

)
. (2.10)

In Chapter 3, we will extend these identifiability results to a more general setting where
general non-factorized conditional priors are considered, in order to be able to learn true data
representation under the assumptions made in this thesis.

Intuitively, the auxiliary variable u effectively specifies a particular way to partition the latent
space Z . In this way, the given auxiliary information will be used to identify the cluster to
which each observed data point belongs in the latent space, which is where the identifiability
comes from. Following this idea, Willetts and Paige (2021) propose an empirical approach
to obtaining identifiability without observing any auxiliary variable. The idea is to learn a
clustering u in the latent space rather than rely on a given one. This ends up being a standard
DLVM with a Gaussian mixture model for the prior over z, with the learned auxiliary variable
u partitioning the latent space in some way. Note that we cannot control the kind of auxiliary
information u that will be learned by this model, but the model can obtain identifiability as
long as it always learns the same u-clustering in the latent space.

Identifiability Metric. We can quantitatively measure the identifiability of a DLVM using
the mean correlation coefficient (MCC) score between samples of the true latent variable
and samples of the latent variable recovered by the DLVM. MCC scores can be obtained by
calculating the correlation coefficient between all pairs of true and recovered latent factors
and then solving a linear sum assignment problem by assigning each recovered latent factor
to the true latent factor with which it best correlates (Khemakhem et al., 2020a). If the
true latent variable is unknown to us, then we compute an average MCC score using latent
variables recovered by the DLVM trained with different random initializations (Khemakhem
et al., 2020b). By definition, higher MCC scores indicate stronger identifiability (up to
pointwise transformations).

2.2 Causality for Machine Learning

Causality has recently caught the attention of the machine learning community (Schölkopf,
2019). Causal representation learning, a promising class of methods combining causal
inference and deep learning, is the central topic of this thesis. In this section, we introduce
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yz

(a) z causes y.

yz

(b) y causes z.

e

yz

(c) z and y are confounded by e.

Fig. 2.1 Three possible causal relationships between two dependent variables z and y.

the concept of causal models, contrast it with statistical learning, and describe the general
idea of causal representation learning.

2.2.1 Causal Models

“Correlation does not imply causation" is a well-known statement in statistics, which tells
us that one cannot identify the causal relationships between variables solely based on their
statistical associations calculated from observational data. For example, in the case of two
statistically dependent variables z and y, there are at least three possible causal relationships
that could explain the observed association between them, as shown in Figure 2.1:

(a) z is the cause of y;

(b) z is the effect of y;

(c) z and y are confounded by another (possibly latent) variable e.

Without additional assumptions it is impossible to distinguish between these three cases from
observational data, since the realizations of these different causal models can give the same
observational distribution. In general, a causal model reveals the underlying data generating
mechanism and thus contains more information than a statistical model which only captures
spurious associations between variables and may fail catastrophically under distribution shift.

Intervention is an important concept in causality. Intervening upon a variable means actively
setting the variable to some value rather than passively observing the variable takes that value.
Unlike observation which only gives us a single (and possibly confounded) observational
distribution, each intervention gives us a different realization of the underlying causal model
in a controllable way. A causal model can thus be thought of as a set of joint distributions
induced by all possible interventions (Schölkopf et al., 2021). This view of causal models pro-
vides us with great insights about how to deal with distribution shift and out-of-distribution
generalization problems in machine learning – it is useful to learn causal models, since they
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are robust when generalizing from an observational distribution to interventional distributions.

It is possible to learn causal models using the information obtained from interventions. That
is, if we are allowed to intervene upon the variables of interest, we may be able to learn the
underlying data generating mechanism. To see this, imagine that we collected a set of data
that consists of average annual temperatures t and altitudes a for many different cities in a
certain country (Peters et al., 2017). This dataset gives us an observational distribution over
t and a. Using this dataset, we can easily confirm that these two variables are statistically
dependent but cannot say anything about the causal relationship between them without any
additional assumptions. Now imagine that we hypothetically intervene upon these variables.
If we increased the altitude of a city, according to our knowledge of the physical world, this
would change the temperature of that city. Conversely, if we increased the temperature of
a city, this would not change the altitude of that city. These (hypothetical) interventions
confirm that the underlying data generating mechanism is altitude a causing temperature t.

In practice, we are often only given a set of observational data and therefore unable to perform
intervention. In order to identify causal relationships between variables from observational
data, we will need to make additional assumptions and/or have additional information of the
underlying data generating mechanism.

The causal inference problem we face in this thesis can be summarized as follows. We are
given a set of latent factors z1, · · · ,zn recovered by a DLVM, each one of which is either the
cause of the target y, the effect of the target y, or independent of the target y. We would like
to identify the causal latent factors of y using observational samples. In Section 4.2, we will
propose a practical causal inference scheme to solve this problem.

2.2.2 Causal Representation Learning

Traditional causal inference methods are symbolic approaches which assume that the random
variables of interests connected according to a causal graph are given. This assumption is
not practical for real-world problems with structured data. For example, in the camel-cow
classification task, the observed variables are images represented by pixel values, which
cannot be directly fitted into the symbolic causal inference framework.

Causal representation learning (Schölkopf et al., 2021) aims to learn the symbols required by
causal inference from structured data by leveraging recent advances in deep learning, which
resembles machine learning going beyond symbolic AI. The Independent Causal Mechanism
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(ICM) Principle (Peters et al., 2017; Schölkopf et al., 2012, 2021) gives us some high level
ideas of what causal representation should be like:

The ICM Principle: The causal generative process of variables in a system is com-
posed of autonomous modules that do not inform or influence each other. In the
probabilistic case, this means that the conditional distribution of each variable given
its causes (i.e., its mechanism) does not inform or influence the other mechanisms.

Specifically, a joint distribution p(z1, · · · ,zn) has many different factorizations, but there is
only one causal factorization

p(z1, · · · ,zn) =
n

∏
i=1

p(zi|pai) (2.11)

that follows the ICM principle, where pai is a subset of {z1, · · · ,zn}\{zi} which contains the
direct causes of zi in the underlying causal graph. This tells us that the factors (or mechanisms)
{p(zi|pai)}n

i=1 should be disentangled in causal representation. Disentanglement may be
defined by:

1. knowing a factor p(zi|pai) does not reveal any information about any other factor
p(z j|pai) (Janzing and Schölkopf, 2010);

2. intervening upon a mechanism p(zi|pai) does not change any other mechanism p(z j|pai)

(Schölkopf et al., 2012).

As an example, let us consider again the temperature-altitude problem, where two possible
factorizations of the joint distribution are 1) p(t,a) = p(a)p(t|a) and 2) p(t,a) = p(t)p(a|t).
Note that the first one is the causal factorization which is robust to distribution shift. To
see this, imagine that we had a second dataset collected in a different country but in the
same climate zone as where the first dataset was collected. Essentially, this new dataset
was sampled from a different joint distribution p(t,a) where p(a) had changed but p(t|a)
remained unchanged. This means that the mechanism p(t|a) learned from the first dataset
can robustly generalize to predicting temperatures from altitudes for the new dataset, while
neither of the factors in the non-causal factorization is reusable.

In Section 4.1 we will use an iVAE-based method to recover the true data representation,
since it is a powerful approach which is guaranteed to recover the true latent variable z∗
(up to simple transformations) and thus achieves a principled form of disentanglement, as
required in causal representation learning.
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Algorithm 1: Model-based optimization.

Input :Objective J(x), initial dataset D = {(x(i),J(x(i)))}N
i=1, query budget Nb,

surrogate model hX (x).
for j ∈ {1, · · · ,Nb} do

Train the surrogate model hX on the current dataset D = {(x(i),J(x(i)))}N+ j−1
i=1

Optimize hX to obtain a new query data point x(N+ j)

Evaluate the objective function J at the new query data point to obtain J(x(N+ j))
Update the dataset D ←D ∪{(x( j+1),J(x( j+1)))}

end
Output :Augmented dataset D = {(x(i),J(x(i)))}N+Nb

i=1

2.3 Black-box Optimization

Black-box optimization is the downstream task considered in this thesis, in which we want
to maximize a black-box objective function J : X ⊂ Rd → R whose analytical form and
derivative information are unavailable. Instead, we are only able to evaluate the objective
function in its domain X . In real-world problems, it can be quite expensive to evaluate
the objective function, so exhaustive search in the input domain X is prohibitive if the
dimensions d of X is large. In this thesis, we aim to achieve efficient black-box optimization
with the help of causal representation learning.

2.3.1 Model-based Optimization

Model-based optimization is a popular approach to solving black-box optimization prob-
lems, which directly operates in the input domain X . The idea is to fit a surrogate model
hX : X ⊂ Rd → R using the initial dataset {(x(i),J(x(i)))}N

i=1 and then iteratively perform
optimization to obtain a new query data point using the surrogate model and update the
surrogate model using all available data points so far. The detailed procedure of model-based
optimization is summarized in Algorithm 1.

Bayesian optimization (Frazier, 2018) is a kind of model-based optimization, where hX

is chosen to be a flexible probabilistic model, such as a Gaussian process (Rasmussen and
Williams, 2006) or Bayesian neural network (Neal, 1996). Bayesian optimization algorithms
use acquisition functions to guide exploration in the search space, which incorporates the
predictions as well as uncertainty estimates from the probabilistic surrogate model. Expected
improvement (Jones et al., 1998) is a popular acquisition function, which determines new
query data points by maximizing the expected gain upon the best data points so far. Bayesian
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Algorithm 2: LSO with weighted retraining.

Input :Objective J(x), initial dataset D = {(x(i),J(x(i)))}N
i=1, query budget Nb,

surrogate model hZ (z), generative model f(z) and corresponding inverse
model q(x), retraining frequency r, weighting function w(x), the number of
epochs for retraining in each optimization round Nre.

Train the DGM (f(z) and q(x)) on D with uniform weighting until convergence
for j ∈ {1, · · · ,Nb/r} do

for l ∈ {1, · · · ,r} do
Obtain latent variable samples Dz = {z = q(x) : x ∈D}
Train the surrogate model hZ (z) on Dz and D
Optimize hZ (z) to obtain a new query latent variable z̃
Evaluate the objective function J at x̃ = f(z̃) to obtain its objective value ỹ
Update the dataset D ←D ∪{(x̃, ỹ)}

end
Fine-tune the DGM (f(z) and q(x)) on D with importance weighting w(x) for
Nre epoch

end
Output :Augmented dataset D

optimization is widely used in many fields, such as hyper-parameter tuning in machine
learning (Snoek et al., 2012), drug discovery in biological chemistry (Negoescu et al., 2011),
materials design in material science (Packwood, 2017), and so on.

2.3.2 Latent Space Optimization

In real-world problems, the input variable x of the black-box objective function J can be
a complex, structured, and high dimensional variable of variable length (e.g., molecules).
Therefore, directly performing optimization in the input space X can be very difficult.
Latent space optimization (LSO) (Gómez-Bombarelli et al., 2018) performs model-based
optimization in the latent space Z of a deep generative model (DGM) trained on the dataset
D . The surrogate model for LSO is hZ : Z ⊂ Rn→ R. LSO makes optimization easier,
since it simplifies the problem to optimizing in a low dimensional and continuous space.
However, naive LSO has two limitations:

1. The latent space Z of a DGM trained on the initial dataset D may not be useful for
efficient optimization of the objective J, since the global optimum is usually very far
away from any data points in the initial dataset.
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2. The DGM does not incorporate the information in the new query data points obtained
during optimization, which could have adjusted the latent space Z to be more amenable
for optimization of J.

To address these two problems, Tripp et al. (2020) propose to perform periodic weighted
retraining for the DGM in LSO. Periodic retraining updates the latent space with new query
data points obtained during optimization. These new query data points often have high
objective values. Importance-weighted training forces the latent space to focus on the regions
that corresponds to data points of high objective values, which makes the DGM more relevant
to optimization. Combining these two complementary ideas enables the DGM to actively
participate in optimization instead of passively encoding-decoding as in naive LSO.

The procedure of LSO with weighted retraining is summarized in Algorithm 2. For retraining,
the hyper-parameter r specifies how many new query data points to be collected in each
optimization round j. To implement weighted training, we use a weighted sampler to
sample mini-batches during training. In practice, we weight each available data point using
rank-based weights when retraining the DGM:

wJ,D ,k(x) ∝
1

kN + rankJ,D(x)
, rankJ,D(x) := |{x′ ∈D : J(x′)> J(x)}|, (2.12)

since rank weighting turns out to be robust and independent of the size of the dataset D . The
hyper-parameter k ∈ (0,∞) controls the degree of weighting. k = 0 puts all weights on the
data point that has the highest objective value, and k = ∞ is equivalent to uniform weighting.
In practice, k = 10−3 is found to be a good choice for LSO.

We argue that LSO can be naturally combined with causal representation learning. The idea is
to optimize the causal latent factors of the target y identified from the latent variable z which
is recovered by an identifiable DLVM. In this thesis, we will show that causal representation
learning improves the robustness, efficiency, and performance of LSO.

2.4 Problem Formulation and Assumptions

The assumptions of the data generating process considered in this thesis is encapsulated in
the causal graph shown in Figure 2.2. The target variable y ∈ R is computed by evaluating
the target objective function J at the observed variable x. The latent variable z, which
generates x, can be divided into three blocks zc, zs, and zp. The block zc contains latent
factors that cause y. The block zs contains latent factors that are caused by y (i.e., they are
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Fig. 2.2 The causal graph of the data generating process considered in this thesis. Nodes rep-
resent variables. Shaded nodes represent observed variables and clear nodes represent latent
variables. Square nodes represent discrete variables and circle nodes represent continuous
variables. Each arrow indicates the causal relationship between the two variables it connects.
Dashed arrows may be absent in some cases.

spuriously correlated with y). The block zp contains latent factors that are independent of
y, which may not exist in some cases. The environment variable e acts as a hidden confounder.

Our causal graph is more general than those considered in the related works in the literature:

1. The environment variable e in our causal graph is assumed to be unobserved. This
overcomes a major limitation of existing works (Arjovsky et al., 2019; Heinze-Deml
et al., 2018; Lu et al., 2021; Peters et al., 2016; Rojas-Carulla et al., 2018) which
require e to be observed, since we usually do not have access to the ground truth
environment variable e in practice.

2. The causal graph considered in Lu et al. (2021) assumes zi ⊥⊥ z j|e for zi,z j ∈ zc and
zi ⊥⊥ z j|(e,y) if zi and z j are not both in zc. In contrast, we only assume zc ⊥⊥ zs |(e,y),
zc ⊥⊥ zp, and zs ⊥⊥ zp. That is, we allow zi ⊥̸⊥ z j|e for zi,z j ∈ zc, zi ⊥̸⊥ z j|(e,y) for
zi,z j ∈ zs, and zi ⊥̸⊥ z j for zi,z j ∈ zp. This makes our method applicable to a much
wider range of problem scenarios, since such (conditional) dependencies between the
latent factors within each block (particularly within zc) almost always exist in practice.

Our goal is to generate new synthetic data x with high target value y, starting from a given
initial dataset D = {(x(i),y(i))}N

i=1. We will take a causal approach to solve this problem.
The idea is as follows. We first recover the true latent variable z∗ using a generalized version
of iVAE, based on the assumption that the prior over the latent variable z given the target y is
a non-factorized distribution, induced from the causal graph shown in Figure 2.2. Then we
employ a practical causal inference scheme to identify causal latent factors zc out of all latent
factors z recovered before. Finally, we perform LSO with weighted retraining to obtain new
data points with maximal target values y by intervening upon the causal latent factors zc.



Chapter 3

Generalized Identifiable VAEs

Before we can identify causal latent factors zc of the target y, we need to recover the true
data representation (i.e., the true latent variable from which the observed variable originated).
In this chapter, we present generalized iVAEs, a novel inference and learning scheme that
is guaranteed to learn identifiable DLVMs with a non-factorized conditional prior, which
accommodates the assumption that the prior over the data representation given the target
is a general non-factorized distribution. Our work can be seen as an extension of iVAE
(Khemakhem et al., 2020a) and ICE-BeeM (Khemakhem et al., 2020b).

3.1 Non-factorized Conditional Priors

Let u∈U ⊂Rm be an auxiliary variable which is concurrently observed with x, as described
in Section 2.1.2. We consider a more general setting than Khemakhem et al. (2020a) and
Khemakhem et al. (2020b), in which the prior over the latent variable z given the auxiliary
variable u is assumed to have a general multivariate strongly exponential family distribution:

pT,λ (z |u) =
Q(z)
Z(u)

exp(⟨T(z),λ (u)⟩), (3.1)

where Q : Z → R is the base measure, Z is the normalizing constant, T : Z → Rk is the
sufficient statistics, and the natural parameters λ : U → Rk crucially depend on u. The
size k ≥ n is the dimensions of the sufficient statistics T and depends on the latent space
dimensions n. We do not treat k as a learnable parameter, so k is fixed once we have specified
the form of the distribution and the dimensions n of the latent variable z. The definition
of strongly exponential family can be found in Appendix A. Note that exponential family
distributions have universal approximation power (Sriperumbudur et al., 2017), and all com-
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mon multivariate exponential family distributions (e.g., multivariate Gaussian) are strongly
exponential. Therefore, these assumptions are not restrictive.

The joint distribution for this new model is then given by

pθ (x,z |u) = pf(x |z)pT,λ (z |u), (3.2)

where pf(x |z) = pε(x− f(z)) is the likelihood as defined before, and θ = {f,T,λ} ∈Θ are
model parameters. We further assume that the domains X , Z and U are open sets, and the
mixing function f : Z →X is bijective so its inverse f−1 : X →Z exists.

3.2 Identifiability Theory

We first define two types of equivalence relations on the parameter space Θ. They correspond
to weak identifiability and strong identifiability, respectively.

Definition 2 (Weak identifiability). Let ∼A be an equivalence relation on Θ defined by:

(f,T,λ )∼A (f̃, T̃, λ̃ ) ⇐⇒ ∃A,c s.t. T(f−1(x)) = A T̃(f̃−1
(x))+ c, ∀x ∈X , (3.3)

where A ∈ Rk×k is an invertible matrix and c ∈ Rk is a vector.

Weak identifiability guarantees that we can recover the true data representation up to an
invertible affine transformation define by the sufficient statistics T and T̃. We can go one
step further and define strong identifiability analogous to the one in linear ICA where the
true source is recovered up to pointwise scaling and permutation:

Definition 3 (Strong identifiability). Let ∼P be an equivalence relation on Θ defined by:

(f,T,λ )∼P (f̃, T̃, λ̃ ) ⇐⇒ ∃P,c s.t. T(f−1(x)) = P T̃(f̃−1
(x))+ c, ∀x ∈X , (3.4)

where P ∈ Rk×k is a block permutation matrix (each block transforms a factor of T into a
factor of T̃) and c ∈ Rk is a vector.

We now present two novel identifiability theorems for generalized iVAEs. The proofs of
them can be found in Appendix B.1 and B.2.

Theorem 4. Suppose that we observe data sampled from a DLVM defined according to (3.1)
and (3.2) with parameters θ = {f,T,λ}. Assume that
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(i) the set {ω ∈ Rd |ϕε(ω) = 0} has measure zero, where ϕε is the characteristic function
of ε ∼ pε(ε);

(ii) the mixing function f is bijective;

(iii) there exists k+1 points u0,u1, · · · ,uk ∈U such that the matrix

L = [λ (u1)−λ (u0), · · · ,λ (uk)−λ (u0)] ∈ Rk×k (3.5)

is invertible.

Then the parameters θ = {f,T,λ} are ∼A–identifiable.

Note that Assumption (iii) in Theorem 4 essentially defines a criterion for determining when
an auxiliary variable u is sufficiently informative to guarantee identifiability.

Theorem 5. Suppose that all assumptions in Theorem 4 hold. Let the sufficient statistics
T(z) = [T f (z)T ,TNN(z)T ]T be of the form of a concatenation of the sufficient statistics
T f (z) = [T f1(z1)

T , · · · ,T fn(zn)
T ]T of a factorized strongly exponential family distribution

and the output TNN(z) of a neural network with ReLU activation. Let k′ be the dimensions of
T f and suppose that k′ ≥ 2n. Assume that

(i) the sufficient statistics T f have all second-order own derivatives;

(ii) the mixing function f has all second-order cross derivatives.

Then the parameters θ = {f,T,λ} are ∼P–identifiable.

The use of a ReLU neural network TNN(z) in Theorem 5 ensures that all its second order
derivatives with respect to the input are zero, which is crucial to the proof of this theorem.
This design choice is not restrictive, since ReLU neural networks have universal approxima-
tion power (Lu et al., 2017) and should be able to capture any dependencies in z of interest.
One common choice for the factorized part T f is the sufficient statistics of a factorized
Gaussian distribution (i.e., each factor is of the form T fi(zi) =

[
zi,z2

i
]T ). Note that the natural

parameters corresponding to z2
i need to be constrained to be negative in this case.

Overall, Theorem 4 and Theorem 5 provide us with theoretical guarantees of identifiability
for DLVMs with a non-factorized conditional prior (up to simple affine transformations).
The result in Theorem 5 is particularly desirable, since it guarantees that the true data
representation z∗ can be recovered up to an affine transformation of the sufficient statistics
T∗f and T̃ f with a permutation τ:

T∗fi(z
∗
i ) = A′i T̃ fτ(i)(zτ(i))+ ci . (3.6)
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3.3 Hybrid Training Objective

Generalized iVAEs cannot be trained using the variational lower bound

F (θ ,φ) = Ep(x,u)

[
Eqφ (z |x,u)[log pf(x |z)]−KL(qφ (z |x,u)||pT,λ (z |u))

]
, (3.7)

since the non-factorized conditional prior

pT,λ (z |u) =
1

ZT,λ (u)
exp
(〈

T f (z),λ f (u)
〉
+ ⟨TNN(z),λ NN(u)⟩+ logQ(z)

)
(3.8)

:=
1

ZT,λ (u)
p∗T,λ (z |u) (3.9)

is essentially an energy-based model (LeCun et al., 2006; Song and Kingma, 2021) and
has an intractable normalizing constant ZT,λ (u) that depends on the parameters T and λ .
Therefore, the KL term in the variational lower bound (3.7) is also intractable.

Score matching (Hyvärinen, 2005) is a popular algorithm for training enenery-based model,
which minimizes the Fisher divergence between the target distribution and the distribution
given by an energy-based model. Here, score refers to the gradient of the log-density with
respect to z, and Fisher divergence is defined to be the mean squared distance between the
score of the target distribution and the score of the distribution given by an energy-based
model. One nice thing about Fisher divergence is that it only requires computing the score
∇z log p∗T,λ (z |u) = ∇z log pT,λ (z |u) of the energy-based model which is independent of the
intractable normalizing constant. Following the idea of score matching, we replace the term
KL(qφ (z |x,u)||pT,λ (z |u)) in (3.7) by a Fisher divergence and propose a hybrid training
scheme which jointly optimizes the following two objectives:

1. the prior parameters T and λ are learned by minimizing the score matching objective,
which is a Fisher divergence between qφ (z |x,u) and pT,λ (z |u)):

min
T,λ

L s(T,λ ) = Ep(x,u)

[
Eq

φ̂
(z |x,u)

[∥∥∥∇z logq
φ̂
(z |x,u)−∇z log p∗T,λ (z |u)

∥∥∥2
]]

. (3.10)

2. the variational parameters φ and likelihood parameters f are learned by maximizing
the pseudo variational lower bound:

max
φ ,f

F v(φ , f) := Ep(x,u)

[
Eqφ (z |x,u)

[
log pf(x |z)+ log p∗T̂,λ̂ (z |u)− logqφ (z |x,u)

]]
,

(3.11)
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This gives us the joint training objective for generalized iVAEs:

max
φ ,θ

F l(φ ,θ) := F v(φ , f)−L s(T,λ ). (3.12)

Note that we only optimize the parameters without a hat and set the parameters with a
hat to be the current values of the corresponding parameters without a hat. The true data
distribution p(x,u) is again estimated by the empirical distribution of a randomly sam-
pled mini-batch at each iteration, and the expectation over qφ (z |x,u) is estimated by MC
using samples z ∼ qφ (z |x,u) with the reparameterization trick. Sometimes it might be
useful to scale the score matching objective L s and the (negative) pseudo KL divergence
Eqφ (z |x,u)[log p∗T,λ (z |u)− logqφ (z |x,u)] in the pseudo variational lower bound F v by a
coefficient, so as to balance between reconstruction and prior regularization, analogous to
the technique used in β -VAE (Higgins et al., 2016).

Finally, we present a theorem for the consistency guarantee of generalized iVAEs. The proof
of this theorem can be found in Appendix B.3.

Theorem 6. Assume that

(i) The family of variational distributions qφ (z |x,u) contains the posterior pf,T,λ (z |x,u)
which is non-zero everywhere and non-degenerate;

(ii) The model (3.2) is trained by maximizing F l(φ ,θ) (3.12) with respect to θ and φ ;

(iii) All assumptions in Theorem 5 hold.

In the limit of infinite data, generalized iVAEs learn the true parameters θ
∗ = {f∗,T∗,λ ∗} up

to the equivalence class defined in Definition 3 and thus recover the true data representation
z∗ up to simple transformations defined in Equation (3.6).

In Section 5.1, we will use a synthetic dataset to show that the assumptions in Theorem 6 are
realistic, and the true latent variable z∗ can be recovered in the finite data regime.





Chapter 4

Latent Space Optimization with Causal
Representation Learning

In this chapter, we present a framework for latent space optimization (LSO) with causal
representation learning, which consists of three steps. In step I, we use the generalized
iVAE described in Chapter 3 to recover the true data representation. In step II, we propose a
practical causal inference scheme to identify causal latent factors zc of the target y from the
data representation z recovered in step I. In step III, we perform LSO by intervening upon the
causal latent factors identified in step II to obtain new data points with maximal target values.
The first two steps are summarized in Figure 4.1, which is based on the ideas in Lu et al.
(2021) but accommodates a more general setting. The last step follows Tripp et al. (2020).

4.1 Step I: Recovering True Data Representation

In the first step, we use generalized iVAE to recover the true latent variable z∗ from which
the observed variable x originated. For black-box optimization tasks, we choose the aux-
iliary variable u to be the target y = J(x) (i.e., the objective function J evaluated at the
observed variable x). The non-factorized conditional prior pT,λ (z |y) over the latent variable
is modelled by a general exponential family distribution with sufficient statistics defined
by T f (z) = [z,z⊙z] and a ReLU neural network TNN : Rn→ Rn(n−1)/2, which simulates
a full Gaussian distribution. The joint distribution of the DLVM that corresponds to this
non-factorized conditional prior is given by pθ (x,z |y) = pf(x |z)pT,λ (z |y). We train this
DLVM by maximizing the hybrid objective (3.12). Under the assumptions in Theorem 6, the
true data representation z∗ can be recovered up to simple transformations defined in (3.6).
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Fig. 4.1 The diagram of causal representation learning (steps I and II).

4.2 Step II: Identifying Causal Latent Factors

After recovering the true data representation by generalized iVAE in Step I, the next step is
to identify causal latent factors of the target y. In this section, we propose a practical causal
inference scheme to solve this problem.

Recall that a latent factor zi can be either the cause of y, the effect of y, or independent of y.
We first perform independence test between y and each zi to exclude the latent factors that
are independent of y. In practice, we can perform HSIC kernel independence test (Gretton
et al., 2007) to infer statistical dependencies from samples.

After removing the latent factors which are independent of y, we can perform conditional
independence test to identify the causal relationships between y and each of the remaining zi.
Conditional independence test is a general and powerful method for causal inference that
exploits the conditional independence structures of causal graphs. For the causal inference
problem considered here, one observation is that a pair of latent factors (zi,z j) are both the
causes of y if and only if the dependency between them increases after conditioning on y
(see Figure 4.2). To implement this idea, we can perform independence test and conditional
independence test for each (zi,z j) pair and look for pairs that have increased dependencies
after conditioning on y. This can be done by comparing p-values from these two tests. Note
that there are at most O(n2) tests to be performed, which can be parallelized in practice.
To infer conditional statistical dependencies from samples, we resort to kernel conditional
independence test (Zhang et al., 2012), which is a generalization of HSIC.



4.2 Step II: Identifying Causal Latent Factors 25

e

yz jzi

x

(a) Two causes.

e

y z jzi

x

(b) One cause and one effect.

e

y zi z j

x

(c) Two effects.

Fig. 4.2 Three possible cases for a pair of latent factors zi and z j which depend on y.

Note that there are some special cases to which the method described above is not applicable:

• If a latent factor zi is a deterministic function of y, then conditioning on y makes
zi deterministic and thus zi will always be independent of any other latent factor z j.
This is because a deterministic variable is always independent of any other variables.
Information Geometric Causal Inference (IGCI) (Daniusis et al., 2012) is a practi-
cal method for inferring deterministic (noise-free) causal relationship between two
variables (e.g., y = g(zi)), which builds on the idea that the distribution of the effects
should be “dependent" on the invertible nonlinear deterministic function g, but the
distribution of the causes should be “independent" of g. The “dependence" between
a distribution and a function is measured by an information geometry criterion. In
practice, we can use Spearman’s correlation coefficient (Spearman, 1904) to find out
if there are any latent factors that have a deterministic relationship with y (e.g., latent
factors whose Spearman’s correlation coefficients with y are greater than, say, 0.98)
and treat them separately by applying IGCI to them for causal discovery1.

• In some cases, there could be only one causal latent factor of y. This violates the
assumption of our method which looks for pairs of causal latent factors. If we cannot
identify any pair of causal latent factors, we can resort to the Additive Noise Model
(ANM) (Hoyer et al., 2008) to identify a single causal latent factor2. ANM builds on the
assumption that the effect is a nonlinear function of the cause plus some additive noise.

1If the deterministic function g is linear (e.g., the Pearson’s correlation coefficient between zi and y is greater
than, say, 0.98), then the causal relationship between zi and y will be generally unidentifiable. In practice, we
usually just count it as a causal latent factor.

2ANM is the most popular, simple and effective method for discovering causal relationship between two
variables. There are also other methods available, such as post-nonlinear causal model (PNLCM) (Zhang and
Hyvarinen, 2012). The reason why we prefer conditional independence test based method is because ANM and
PNLCM make more assumptions about the relationship between zi and y which may not hold in practice.
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Note that the converse is not true due to the nonlinear function. In practice, for each zi

we can fit a nonlinear regression model for each of the two possible causal directions
(i.e., zi← y and zi→ y) and see which direction satisfies the additive noise assumption
by performing independence test between the residual and the input variable.

Overall, our causal latent factor identification scheme is summarized in Algorithm 3.

4.3 Step III: Performing Latent Space Optimization

Once we manage to identify the causal latent factors zc of the target y in step II, we can then
optimize y by intervening upon the causal latent factors zc using standard LSO techniques
along with weighted retraining as described in Algorithm 2. Our method has three advantages:

• Our latent space Z is more amenable to optimization, since the generalized iVAE can
recover the true latent variable z∗ with reference to y, achieving a principled form of
disentanglement.

• We only need to optimize a subset zc of the latent variable z, which is easier and more
efficient than standard LSO.

• Our surrogate model hZ c predicts y from causal latent factors zc, which gets rid of
spurious correlations and is invariant across different environments.

Note that non-causal latent factors do not have any effects on the target y. Hence, we may
just set their values to be the same as those for the current best data point in the dataset during
optimization.
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Algorithm 3: Practical scheme for identifying causal latent factors (Step II).
Input :Samples of true latent factors z = {z1, · · · ,zn} recovered by generalized

iVAE in Step I and corresponding samples of target y, significance level α .
Initialize zc← /0, zdet ← /0, and zdep← /0
for zi ∈ z do

Test dependency between zi and y to obtain p-value puncon
i using HSIC

if puncon
i ≤ α then
Compute Spearman’s correlation coefficient ρs

i between zi and y
if ρs

i > 0.98 then
zdet ← zdet ∪{zi}

else
zdep← zdep∪{zi}

end
end

end
for zi ∈ zdet do

Compute Pearson’s correlation coefficient ρ
p
i between zi and y

if ρ
p
i > 0.98 then
zc← zc∪{zi}

else
Discover causal relationship between zi and y using IGCI
if zi is the cause of y then

zc← zc∪{zi}
end

end
end
for zi,z j ∈ zdep (i ̸= j) do

Test dependency between zi and z j to obtain p-value puncon
i, j using HSIC

Test conditional dependency between zi and z j given y to obtain p-value pcon
i, j|y

if pcon
i, j|y ≤ puncon

i, j and pcon
i, j|y ≤ α then

zc← zc∪{zi,z j}
end

end
if zc is empty then

for zi ∈ zdep do
Discover causal relationship between zi and y using ANM or PNLCM
if zi is the cause of y then

zc← zc∪{zi}
end

end
end
Output :Causal latent factors zc.





Chapter 5

Empirical Evaluations

In this chapter, we empirically evaluate and analyze our proposed framework on 1) a small
synthetic dataset, 2) a midsize toy dataset for image optimization, and 3) a large molecular
dataset for chemical design.

5.1 Synthetic Dataset

In this section, we demonstrate the identifiability of DLVMs with a non-factorized conditional
prior trained by generalized iVAE on a synthetic dataset, similar to the one used in Lu et al.
(2021). The underlying ground truth data generating process of this dataset is as follows:

e∼U {0.2,3.0,6.0,10.0}, (5.1)

z1 ∼N (e,1), (5.2)

z2 ∼N (2e,4), (5.3)

y∼N (z1 + z2 + z1z2,1), (5.4)

x = f(z1,z2), (5.5)

where the mixing function f : R2→ R10 is modelled by a single-hidden-layer neural network
whose parameters are randomly preset and fixed. Figure 5.1a shows the causal graph for this
data generating process, which fits into the problem setting considered in this thesis, where
the latent variable z = zc = (z1,z2) causes the target y and the observed variable x, and the
two latent factors z1 and z2 are confounded by a hidden environment variable e. Note that
z1 and z2 are conditionally dependent given y (i.e., z1 ⊥̸⊥ z2|y). Therefore, we will need a
non-factorized conditional prior pT,λ (z |y).
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Fig. 5.1 (a) The causal graph that describes the data generating process of the synthetic
dataset. (b) The scatter plot of samples of the ground truth latent variable z∗ in the synthetic
problem, where colors represent the ground truth environment e.
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Fig. 5.2 Scatter plots of samples of the latent variable z = (z1,z2) recovered by (a) VAE,
(b) iVAE, (c) generalized iVAE, and (d) generalized iVAE with access to e in the synthetic
problem. Colors represent the ground truth environment variable e for illustration purpose.
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Fig. 5.3 Mean correlation coefficient (MCC) scores for VAE, iVAE, generalized iVAE, and
generalized iVAE with access to e on the synthetic dataset.

The synthetic dataset consists of 4,000 samples generated according to Equations (5.1)–(5.5).
The task is to recover the true latent variable z∗ using samples of x and y in this dataset.
This means that we need to solve this problem without access to e or z. We compare the
performance of three DLVMs trained using different inference and learning schemes – VAE,
iVAE, and generalized iVAE. For iVAE and generalized iVAE, we choose y as the auxiliary
variable for the conditional prior pT,λ (z |y). In theory, generalized iVAE should be able
to recover the true latent variable up to simple transformations defined in Equation (3.6)
(i.e., strong identifiability). We also include an additional result of generalized iVAE with
access to samples of the ground truth environment variable e (i.e., including e in the auxiliary
variable for the conditional prior pT,λ (z |y,e)) as a reference for comparison.

We visualize samples of the ground truth latent variable (as shown in Figure 5.1b) and
samples of the latent variable recovered by the VAE, iVAE, and generalized iVAE using
2D scatter plots. It can be seen that generalized iVAE successfully recovers the true latent
variable up to simple transformations, as shown in Figure 5.2c. The latent variable recovered
by iVAE is not as good as that recovered by generalized iVAE, as there is an overlapping
between samples from the red and green environments, as shown in Figure 5.2b. This is
because the factorized conditional prior in iVAE is unable to handle dependencies between
latent factors when conditioning on y. The latent variable recovered by VAE is clearly not
identifiable, as shown in Figure 5.2a. It is worth noting that including e in the auxiliary
variable for the conditional prior does not improve the quality of the latent variable recovered
by generalized iVAE, as shown in Figure 5.2d.
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We train each model ten times with different random seeds and compute the MCC score
between the ground truth latent variable and the latent variable recovered with each random
seed. Figure 5.3 is a box plot that shows the MCC scores for VAE, iVAE, generalized iVAE,
and generalized iVAE with access to e on the synthetic dataset. It can be seen that the
median of the MCC score for generalized iVAE is greater than 0.85, indicating very strong
identifiability, whereas the median of the MCC score for iVAE is less than 0.75 and that for
VAE is less than 0.25. This also confirms that including e in the auxiliary variable for the
conditional prior does not improve the identifiability of generalized iVAE. In fact, it even
results in a slightly lower median MCC score in this experiment. These results are consistent
with the visualizations shown in Figure 5.2.

Overall, this experiment shows that the assumptions in Theorem 6 can be met in practice,
and the true latent variable z∗ can be recovered in the finite data regime.

5.2 Image Optimization

In this section, we apply our proposed framework to an image optimization task, starting
from a toy dataset Colored MNIST. We will analyze our findings in each step.

Dataset

The Colored MNIST dataset is created by coloring the images in the original MNIST
dataset (LeCun, 1998), so that the color pixel values are spuriously correlated with the
target y = J(x). We will define the objective J(x) later. We color the digit images in a
different way to Arjovsky et al. (2019). For each image in the MNIST dataset, we first
normalize its pixel values to the interval [0,1]. Then we sample an environment variable
e∼U {0,1} and a Bernoulli random variable b∼ Bernoulli(pe) with p0 = 0.2 and p1 = 0.1.
We color the image by appending two additional channels to it. Each pixel in these two chan-
nels is sampled from a Gaussian distribution N (µb,e,σ

2
e ) with σ0 = 0.01 and σ1 = 0.05.

Note that the mean color µb,e depends on both b and e. We set µ1,e ∼ U [0,1] for both
environments e = 0,1, which means that the image is colored randomly if b = 1. We

set µ0,0 = Sigmoid
(

2(y− Ê[y])/
√

V̂ar[y]
)

and µ0,1 = Sigmoid
(
−2(y− Ê[y])/

√
V̂ar[y]

)
,

where Ê and V̂ar are empirical mean and variance over the training set. This means that the
image is colored according to the target value y and the environment e if b = 0. Finally, we
clip the pixel values of the resulting image to the interval [0,1].
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Fig. 5.4 (a) The causal graph for the data generating process of the Colored MNIST dataset.
(b) The first channel of the hold-out image x∗ used in the image optimization objective.
(c) The first channel of the image in the Colored MNIST training set that has the highest
objective value (y =−1900.48).

Figure 5.4a shows the causal graph that describes the data generating process of the Colored
MNIST dataset, where the causal latent factors zc of the target y control the shape of the digit
in the image x, and the effect latent factors zs of y control the color of the image x. Note that
the environment variable e is assumed to be latent, and we only have access to samples of x
and y in the dataset D .

Objective

The black-box objective function to be maximized is defined as the negative Euclidean
distance between the first channel of the input colored image x and the first channel of a
hold-out target image x∗ from the test set of the MNIST dataset:

J(x) =−∥h(x)−h(x∗)∥2, (5.6)

where x∗ is chosen to be the image of digit zero in the test set such that it is the farthest one
from all images in the training set, as shown in Figure 5.4b, and the function h outputs the first
channel of an input image in the form of a flattened vector. This objective function implies
that the color of an image x and the latent factors zs that control the color are spuriously
correlated with the target y = J(x), and therefore predicting y from the color of an image
(or zs) will fail catastrophically when the environment e changes. Hence, this essentially
simulates the spurious correlation in the camel-cow classification task. It is also worth noting
that although the effect latent factors zs are correlated with the target y, they do not cause y.
Therefore, intervening upon them will not change the objective value during optimization.
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Note that the objective function is assumed to be a black box in this task, which means
that we can only evaluate it at different input images but cannot use its analytical form or
derivative information during optimization.

Step I: Recover True Data Representation

We recover the true representation of colored MNIST images by training a DLVM pθ (x,z |y)=
pf(x |z)pT,λ (z |y) using generalized iVAE. To show that this model can recover the true latent
variable z∗ that has generated the image x, we quantify its identifiability using MCC scores.
Since we do not have access to the true latent variable, we train this DLVM five times with
different random seeds and compute the MCC scores between the latent variables recov-
ered by each pair of models (there are

(5
2

)
= 10 pairs of models in total). We also include

additional results for DLVMs trained by generalized iVAE with access to the ground truth en-
vironment e (i.e., pθ (x,z |y,e) = pf(x |z)pT,λ (z |y,e)) and VAE (i.e., pθ (x,z) = pf(x |z)p(z))
for comparison. For all three DLVMs, we set the dimensions of the latent space Z to n = 8
and train them on the training set which consists of 60,000 data points.

It can be seen in Figure 5.5 that the median of the MCC score for generalized iVAE is 0.7,
indicating that the latent variable z recovered by this model has good identifiability. The
median of the MCC score for VAE is around 0.47, which shows that the identifiability of
VAE is much weaker than generalized iVAE on the Colored MNIST dataset. Interestingly,
including e in the auxiliary variable for the conditional prior in generalized iVAE weakens its
identifiability. This means that knowing e does not improve the identifiability of generalized
iVAE in this problem, which is consistent with the conclusion made for the synthetic dataset.

Step II: Identifying Causal Latent Factors

We use Algorithm 3 to identify causal latent factors zc from all latent factors z recovered
by the DLVM pθ (x,z |y) = pf(x |z)pT,λ (z |y) trained using generalized iVAE in Step I. We
find that the five models trained with different random seeds are of a similar qualitative
nature, so here we only show results for one of the five models. We randomly choose 1,000
observational samples of (x,y) from the dataset D and encode them to obtain corresponding
samples of z. Figure 5.6a shows the scatter plot of y against each zi using these 1,000 samples.
Applying Algorithm 3 to these 1,000 samples of (z,y) gives us the following results:

1. All latent factors in z are dependent on y.

2. z2,z4,z5,z6,z7,z8 are the causal latent factors of y.
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Fig. 5.5 Mean correlation coefficient (MCC) scores for VAE, iVAE, generalized iVAE, and
generalized iVAE with access to e on the Colored MNIST dataset.

3. z1 and z3 are the effect latent factors of y.

We also perform intervention upon each zi to verify the causal identification results above.
Figure 5.6b shows how intervening upon each zi affects the image x and the target y. It can
be seen that intervening upon each of the latent factors z2,z4,z5,z6,z7,z8 affects the shape
of the digit in the image and the target y but not the color of the image, which confirms that
they are the causes of y. In contrast, intervening upon z1 affects the color of the image but
not the shape of digit in the image or the target y, which confirms that z1 is the effect of y.
This implies that y and z1 are spuriously correlated and their relationship is not invariant
across different environments, which is consistent with the data generating process and the
observational samples shown in the leftmost plot in the first row of Figure 5.6a. Interestingly,
intervening upon z3 does not change anything, showing that it is a non-causal latent factor,
although it does depend on y according to observational samples.

As a reference, we produce the same plots for generalized iVAE with access to the ground
truth environment variable e in Figure 5.7, which is qualitatively similar to Figure 5.6. In
this case, Algorithm 3 also identifies six causal latent factors z1,z2,z3,z5,z6,z7, showing that
including e in the auxiliary variable for the conditional prior does not change our ability
to identify causal latent factors using Algorithm 3. We also produce such plots for VAE in
Figure 5.8 for comparison. It can be seen in Figure 5.8b that intervening upon z4 affects the
color of the image, the shape of the digit in the image, and the target y. This shows that VAE
cannot recover the true latent variable, since the effect latent factor is entangled with some of
the causal latent factors.
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(a) Observational samples of y against each zi.
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(b) In each row, the rightmost plot shows y against displacement of zi, and the images show the
corresponding changes of x when displacing zi. The initial image before intervention is in the middle
(column 5) of each row, whose objective y is indicated by the red dashed line in the rightmost plot.

Fig. 5.6 Generalized iVAE: (a) The scatter plot of samples of y against each zi from observa-
tional data, where colors represent the (unknown) ground truth environment variable e for
illustration purpose. (b) The effects on the image x and target y when intervening on each zi.
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(a) Observational samples of y against each zi.
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(b) In each row, the rightmost plot shows y against displacement of zi, and the images show the
corresponding changes of x when displacing zi. The initial image before intervention is in the middle
(column 5) of each row, whose objective y is indicated by the red dashed line in the rightmost plot.

Fig. 5.7 Generalized iVAE with access to e: (a) The scatter plot of samples of y against each
zi from observational data, where colors represent the ground truth environment variable e.
(b) The effects on the image x and target y when intervening on each zi.
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(a) Observational samples of y against each zi.
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(b) In each row, the rightmost plot shows y against displacement of zi, and the images show the
corresponding changes of x when displacing zi. The initial image before intervention is in the middle
(column 5) of each row, whose objective y is indicated by the red dashed line in the rightmost plot.

Fig. 5.8 VAE: (a) The scatter plot of samples of y against each zi from observational data,
where colors represent the (unknown) ground truth environment variable e for illustration
purpose. (b) The effects on the image x and target y when intervening on each zi.
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Step III: Performing Latent Space Optimization

We perform LSO with weighted retraining by intervening upon the causal latent factors zc

identified in step II. The values of all non-causal latent factors are set to be the same as those
for the current best data point in the dataset D . We find that the underlying mapping from the
causal latent factors zc to the target y is extremely non-smooth, which makes it very difficult
to fit a surrogate model hZ c . Therefore, for illustration purpose we instead enumerate the
causal latent factors zc to obtain a coarse optimizer, where we evaluate each latent factor
at 7 linearly spaced grid points within its feasible region, resulting in 78 evaluations for all
latent factors or 76 evaluations for causal latent factors. The feasible region of a latent factor
is chosen to be between its empirical minimum and maximum from samples. We choose
k = 10−3 for the rank-based weighting hyper-parameter. We collect r = 10 best points and
retrain the DLVM for Nre = 1 epoch in each optimization round. For each of the three
DLVMs, we perform LSO for all five models obtained with different random seeds in step I
and report the mean top1 optimization performance with standard deviation. For generalized
iVAEs, we also compare their optimization performance when using causal latent factors zc

with that when using all latent factors z.

The LSO performance for the image optimization task is shown in Figure 5.9. It can be
seen that the performance of generalized iVAE using causal latent factors (the green curve)
is almost identical to that of generalized iVAE using all causal latent factors (the orange
curve), indicating that the non-causal latent factors indeed have almost no effect on y during
optimization. Also, including e in the auxiliary variable for the conditional prior in gener-
alized iVAE (the red and purple curves) does not improve the optimization performance.
In addition, generalized iVAEs significantly outperform VAE (the blue curve). In fact, the
mean performance that our method achieved at the first evaluation is already better than that
achieved by VAE in the final optimization round.

Overall, we conclude that our method improves both the efficiency and performance of LSO
for this image optimization task. The performance gain is due to the ability of generalized
iVAEs to recovering the true latent variable z∗ with reference to the target y, achieving a
principled form of disentanglement in the latent space Z . The efficiency gain is due to the
ability of our causal inference scheme to identifying causal latent factors zc, which enables
us to search a subspace of Z during optimization without performance loss.
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Fig. 5.9 Top1 image optimization performance starting from the Colored MNIST dataset
with weighted retraining (k = 10−3, r = 10 and Nre = 1) obtained by VAE using all latent
factors and generalized iVAEs (with and without access to e) using all latent factors and
using causal latent factors. Shaded areas correspond to standard deviation.
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5.3 Chemical Design

Chemical design is an important application of LSO (Gómez-Bombarelli et al., 2018), which
aims to generate novel molecules with maximal drug properties. In this section, we apply
our proposed framework to a chemical design task starting from a large molecular dataset
ZINC-250K, following the problem setup considered in Gómez-Bombarelli et al. (2018).

Molecular Dataset and Representation

The ZINC-250K dataset (Irwin et al., 2012) contains 250,000 molecules for chemical
discovery. This is a challenging dataset, since the true data generating process is completely
unknown and could be highly complicated. Also, it is unclear what the environment variable
e represents in this case. For this task, we represent molecular graphs in line notation
using Simplified Molecular Input Line Entry System (SMILES) (Weininger, 1988, 1990;
Weininger et al., 1989). SMILES strings can be easily processed by standard natural language
processing models, such as Long Short Term Memory (LSTM) (Hochreiter and Schmidhuber,
1997) neural networks with word embedding (Mikolov et al., 2013). Since a molecule may
be represented by multiple different SMILES strings, we use canonical SMILES to create
a one-to-one map between molecules and SMILES strings, which specifies a particular
ordering of atoms. It is easy for human to understand SMILES strings, although in some
cases SMILES may transform short-range dependencies between atoms in a molecular graph
into long-range dependencies in the corresponding SMILES strings.

Objective

The black-box objective function to be maximized is the penalized water-octanol partition
coefficient (penalized logP) property function:

J(x) = ˆlogP(x)− ŜA(x)− ˆcycle(x), (5.7)

where logP(x) is the water-octanol partition coefficient property function, SA(x) measures
the synthetic accessibility of a molecule x, cycle(x) counts the number of rings with lengths
greater than 6 in a molecule x, and the hat operator standardizes the raw output with the
empirical mean and variance statistics computed from the ZINC dataset. This is a standard
chemical design task first proposed by Gómez-Bombarelli et al. (2018), which has since been
studied in many papers (Dai et al., 2018; Jin et al., 2018; Kusner et al., 2017; Tripp et al.,
2020; You et al., 2018; Zhou et al., 2019). Figure 5.10 shows the molecule with the highest
target value (y = 4.52) in the ZINC-250K dataset.
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Fig. 5.10 The molecule with the highest penalized logP drug property (y = 4.52) in the
ZINC-250K dataset.

Results and Discussions

We train the DLVM pθ (x,z |y) = pf(x |z)pT,λ (z |y) on the ZINC-250K dataset using gener-
alized iVAE, so as to recover the true latent variable from which the molecules originated.
This is followed by causal identification and LSO using causal latent factors. We repeat this
process five times with different random seeds. Following Tripp et al. (2020), we set the
dimensions of the latent space Z to n = 56 and the hyper-parameters of weighted retraining
to k = 10−3, r = 50, and Nre = 1. To highlight the advantages of our method, we use simple
LSTM neural networks with word embedding for the encoder and decoder architectures in
generalized iVAE and enumerate a coarse optimizer that only evaluates 5 grid points for
each causal latent factor, whereas Tripp et al. (2020) use a more advanced junction tree VAE
(Jin et al., 2018) and employ Bayesian optimization with a sparse Gaussian process (Titsias,
2009) and the expected improvement acquisition function (Jones et al., 1998).

Figure 5.11 shows the top1 optimization performance for this chemical design task, in which
we compare our method with the start-of-the-art method (Tripp et al., 2020) in the literature.
It can be seen that the mean performance of our method significantly outperforms LSO with
VAE which uses all 56 latent factors. In fact, the mean performance that our method achieved
after the first optimization round (at the 50th evaluation) is already better than that achieved
by the other method in the final optimization round. However, the performance of our method
also has a significantly larger variance.
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Fig. 5.11 Top1 chemical design performance starting from the ZINC-250K dataset with
weighted retraining (k = 10−3, r = 50 and Nre = 1) obtained by VAE using all latent factors
and generalized iVAE using causal latent factors. Shaded areas correspond to standard
deviation.
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Table 5.1 The summary of causal identification and optimization results obtained by our
method for the chemical design task. The dimensions of the latent space Z are n = 56.

Random seed #zi depending on y #zi causing y highest y value obtained

Seed 1 7 5 62.50
Seed 2 4 4 105.78
Seed 3 6 3 28.92
Seed 4 6 4 13.96
Seed 5 5 3 27.31

Now we take a closer look at our models. Table 5.1 summarizes the causal identification
results and optimization performance of each of our five models trained with different random
seeds. Interestingly, there are only 4-7 latent factors that are dependent on the target y and
only 3-5 latent factors that cause y. We suspect that this is because the logP property function
is a sparse objective which is only affected by a few atoms or substructures in the molecules.
Therefore, the majority of latent factors are identified to be irrelevant to the target y, which
significantly improves the efficiency and effectiveness of LSO.

Finally, we try to interpret the latent factors by performing interventions. Interestingly,
when we intervene upon some non-causal latent factors, we find that the molecular structure
changes while the target value almost remains constant (see Figure 5.12 for an example).
Intervene upon causal latent factors results in changes of both molecular structure and target
value. However, we cannot spot any patterns of such changes of molecular structure, although
there is one causal latent factor strongly correlated with y, similar to z7 in Figure 5.6b in the
image optimization task. Our conjecture is that intervening upon the causes of the penal-
ized logP target may not necessarily result in obvious patterns of molecular structure changes.

On the other hand, the best molecules obtained with random seeds 1 and 2 are a long chain of
carbon atoms (y = 65.50) and a long chain that mostly consists of sulfur atoms (y = 105.78),
respectively. Note that there is no such type of molecules in the ZINC-250K dataset in terms
of the molecular structure and size. This means that these models can generate molecules
of good penalized logP drug properties that are far away from the initial data distribution,
which suggests that our method may actually have learned the underlying causal mechanism
for this chemical design task. However, further investigations will be needed in order to
confirm this, which is left for future work. The best molecules obtained with random seeds
3-5 consist of many duplicates of the ring structures presented in Figure 5.10, indicating that
these models manage to exploit the useful information in the initial dataset.
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Chapter 6

Conclusions

6.1 Discussions

In this thesis, we presented and investigated causal representation learning for latent space
optimization. We extended iVAEs to a more general case where non-factorized conditional
priors are used, for which we obtained novel identifiability theorems. This allowed us to
recover the true data representation based on a practical assumption that the prior over the
latent variable given the target is a general non-factorized exponential distribution. We also
proposed a practical causal inference scheme to identify causal latent factors of the target
from the data representation recovered by generalized iVAEs. Our causal representation
learning and identification scheme is applicable to a wider range of problem settings than
those considered in the existing works in the literature, since we made less assumptions of
the causal graph for the data generating process. We also argued that causal representation
learning enabled better LSO in terms of robustness, efficiency, and performance.

We demonstrated the identifiability of generalized iVAE on a synthetic dataset. We saw
that generalized iVAE achieved a very high median MCC score (> 0.85) and was the only
learning and inference scheme that managed to recover the true latent variable from which
the observed data had originated up to simple transformations. We also considered an image
optimization task, where the target is to generate digits that have minimal distances to a digit
in the hold-out image, regardless of color. We saw that our method managed to identify the
causal latent factors that control the shape of the digit in an image and discard the non-causal
latent factors that control the color of the image. By intervening upon the causal latent
factors, our method significantly outperformed LSO with VAE that uses all latent factors.
Finally, we applied our method to a standard chemical design task, where the target is to
generate molecules that maximize the penalized logP drug property. Our method identified
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very few causal latent factors (3-5 out of 56). By intervening upon these causal latent factors,
the mean optimization performance of our method was significantly better than that of the
state-of-the-art method in the literature which used all 56 latent factors for optimization. We
generated novel molecules with high target values that had completely different molecular
structures and sizes than the ones in the initial dataset, suggesting that our method might
manage to learn the underlying causal mechanism of the target and thus could generate novel
molecules that were far away from the initial data distribution.

6.2 Future Work

Although we showed that our proposed method produced impressive results for both causal
representation learning and black-box optimization, there are many other interesting things
we could investigate if we had more time, which will be left for future work.

Sampling from the prior. An alternative and possibly more efficient way to perform LSO
with causal representation learning would be to generate new data points by directly sampling
from the conditional prior pT,λ (z |y) in generalized iVAEs. If we condition on a high value
of y, we should be able to draw samples of z that can be decoded to x with high target values.
The main difficulty of this approach comes from the fact that the conditional prior is a super
flexible energy-based model parameterized by neural networks, which has an intractable
normalizing constant. Hence, a proper sampling scheme would need to be devised.

Investigating when the method will work. Our proposed method worked well on the two
black-box optimization tasks considered in this thesis. However, we found that it could also
fail in some cases. For example, in other chemical design tasks (e.g., when the drug property
function is discrete and/or bounded), our method can fail to recover the true latent variable,
fail to identify causal latent factors or fail to obtain data points with high target values. It
would be useful to perform sensitivity analysis in each step to get a better understanding of
when our method will and will not work.

Interpreting the causal latent factors for molecules. Our proposed method achieved
great optimization performance on the chemical design task considered in this thesis. How-
ever, we found it difficult to interpret the meanings of those causal latent factors identified
in this task. It would be interesting to investigate more regarding the interpretability of the
causal latent factors for molecules.
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Appendix A

Strongly Exponential Family

Definition 7 (Strongly exponential). A multivariate exponential family distribution

p(z) =
Q(z)
Z(θ)

exp(⟨T(z),θ⟩) (A.1)

is strongly exponential, if

(∃θ ∈ Rk s.t. ⟨T(z),θ⟩= const, ∀z ∈Z ) =⇒ (l(Z ) = 0 or θ = 0), ∀Z ⊂ Rn,

(A.2)

where l is the Lebesgue measure.

Essentially, the density of a strongly exponential family distribution almost surely has the
exponential component exp(⟨T(z),θ⟩) and can only be reduced to the base measure Q(z) on
a set of measure zero.





Appendix B

Proofs

B.1 Proof of Theorem 4

Proof. Define vol(B) =
√

det(BT B) for any full rank matrix B. Suppose that we have two
sets of parameters θ = (f,T,λ ) and θ̃ = (f̃, T̃, λ̃ ) such that pθ (x |u) = p

θ̃
(x |u), ∀(x,u) ∈

X ×U . We want to show θ ∼A θ̃ . The proof consists of three steps, the first two of which
are similar to those in the proof of Theorem 1 in Khemakhem et al. (2020a). The last step is
original and contributes to the proof of Theorem 4 in Lu et al. (2021).

Step I. In this step, we transform the equality of the marginal distributions over observed
data into the equality of noise-free distributions. For all pairs (x,u) ∈X ×U , we have

pθ (x |u) = p
θ̃
(x |u) (B.1)

=⇒
∫
Z

pf(x |z)pT,λ (z |u)d z =
∫
Z

pf̃(x |z)pT̃,λ̃ (z |u)d z (B.2)

=⇒
∫
Z

pε(x− f(z))pT,λ (z |u)d z =
∫
Z

pε(x− f̃(z))pT̃,λ̃ (z |u)d z (B.3)

=⇒
∫

X
pε(x− x̄)pT,λ (f−1(x̄)|u)vol(Jf−1(x̄))d x̄ =

∫
X

pε(x− x̄)pT̃,λ̃ (f̃
−1
(x̄)|u)vol(Jf̃−1(x̄))d x̄ (B.4)

=⇒
∫
Rd

pε(x− x̄) p̃f,T,λ ,u(x̄)d x̄ =
∫
Rd

pε(x− x̄) p̃f̃,T̃,λ̃ ,u(x̄)d x̄ (B.5)

=⇒ (p̃f,T,λ ,u ∗ pε)(x) = (p̃f̃,T̃,λ̃ ,u ∗ pε)(x) (B.6)

=⇒ F [p̃f,T,λ ,u](ω)ϕε(ω) = F [p̃f̃,T̃,λ̃ ,u](ω)ϕε(ω) (B.7)

=⇒ F [p̃f,T,λ ,u](ω) = F [p̃f̃,T̃,λ̃ ,u](ω) (B.8)

=⇒ p̃f,T,λ ,u(x) = p̃f̃,T̃,λ̃ ,u(x) (B.9)

=⇒ pT,λ (f−1(x)|u)vol(Jf−1(x)) = pT̃,λ̃ (f̃
−1
(x)|u)vol(Jf̃−1(x)), (B.10)
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where

• in Equation (B.4), we made changes of variables x̄ = f(z) on the LHS and x̄ = f̃(z) on
the RHS and denoted the Jacobian by J;

• in Equation (B.5), we defined p̃f,T,λ ,u(x)≜ pT,λ (f−1(x)|u)vol(Jf−1(x))IX (x) on the
LHS and similarly on the RHS;

• in Equation (B.6), we denoted the convolution operator by ∗;

• in Equation (B.7), we applied Fourier transform F in both sides and used the definition
of the characteristic function that ϕε(ω) = F [pε ](ω);

• in Equation (B.8), we used assumption (i) that ϕε(ω) is non-zero almost everywhere.

Step II. In this step, we remove terms that are functions of x only. Taking logarithm on
both sides of Equation (B.10), we have

logvol(Jf−1(x))+ logQ(f−1(x))− logZ(u)+
〈
T(f−1(x)),λ (u)

〉
= logvol(Jf̃−1(x))+ log Q̃(f̃−1

(x))− log Z̃(u)+
〈

T̃(f̃−1
(x)), λ̃ (u)

〉
.

(B.11)

Let u0,u1, · · · ,uk ∈U be the k+1 points defined in assumption (iii). For each l = 1, · · · ,k,
we evaluate Equation (B.11) at these points to obtain k+1 equations, and subtract the first
equation from the remaining k equations to obtain:

〈
T(f−1(x)),λ (ul)−λ (u0)

〉
+ log

Z(u0)

Z(ul)
=
〈

T̃(f̃−1
(x)), λ̃ (ul)− λ̃ (u0)

〉
+ log

Z̃(u0)

Z̃(ul)
. (B.12)

Let L be defined as in assumption (iii) and L̃ defined similarly for λ̃ . Note that L is invertible
by assumption, but L̃ is not necessarily invertible. Letting b ∈Rk in which bl = log Z̃(u0)Z(ul)

Z̃(ul)Z(u0)
,

we have

LT T(f−1(x)) = L̃T T̃(f̃−1
(x))+b . (B.13)

Left multiplying both sides of Equation (B.13) by L−T gives

T(f−1(x)) = A T̃(f̃−1
(x))+ c, (B.14)

where A = L−T L̃ ∈ Rk×k and c = L−T b ∈ Rk.
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Step III. To complete the proof, we need to show that A is invertible. Let zl ∈Z , xl =

f(zl), l = 0, · · · ,k. We evaluate Equation (B.14) at these k+1 points to obtain k+1 equations
and subtract the first equation from the remaining k equations to obtain

[T(z1)−T(z0), · · · ,T(zk)−T(z0)]︸ ︷︷ ︸
≜R∈Rk×k

= A [T̃(f̃−1
(x1))− T̃(f̃−1

(x0)), · · · , T̃(f̃
−1
(xk))− T̃(f̃−1

(x0))]︸ ︷︷ ︸
≜R̃∈Rk×k

.

(B.15)

We need to show that for a given z0 ∈Z , there exist k points z1, · · · ,zk ∈Z such that the
columns of R are linearly independent. Suppose, for contradiction, that the columns of R
would never be linearly independent for any choice of z1, · · · ,zk ∈Z . Then the function
g(z) ≜ T(z)−T(z0) would live in a k− 1 or lower dimensional subspace, and thus we
could find a non-zero vector λ ∈ Rk orthogonal to that subspace. This would imply that
⟨T(z)−T(z0),λ ⟩= 0 and thus ⟨T(z),λ ⟩= ⟨T(z0),λ ⟩= const, ∀z ∈Z , which contradicts
the assumption that the prior is strongly exponential. Therefore, we have shown that there
exist k+1 points z0,z1, · · · ,zk ∈Z such that R is invertible. Since R = AR̃ and A is not a
function of z, A must be invertible. This completes the proof. Note that in this step we did
not work with the Jacobian of the sufficient statistics, so we do not need assumption (iii) in
Theorem 1 in Khemakhem et al. (2020a).

B.2 Proof of Theorem 5

Proof. Let v = f̃−1 ◦ f : Z →Z . Since all assumptions in Theorem 4 hold, we have

T(z) = A T̃(v(z))+ c, (B.16)

where A ∈ Rk×k is invertible. We want to show that A is a block permutation matrix. The
proof consists of two steps, both of which are original and contribute to the proof of Theorem
5 in Lu et al. (2021).

Step I. In this step, we show that v is a pointwise function. We first differentiate both sides
of Equation (B.16) with respect to zs and zt (s ̸= t) to obtain

∂ T(z)
∂ zs

= A
n

∑
i=1

∂ T̃(v(z))
∂vi(z)

· ∂vi(z)
∂ zs

(B.17)

∂ 2 T(z)
∂ zs∂ zt

= A
n

∑
i=1

n

∑
j=1

∂ 2 T̃(v(z))
∂vi(z)∂v j(z)

·
∂v j(z)

∂ zt
· ∂vi(z)

∂ zs
+A

n

∑
i=1

∂ T̃(v(z))
∂vi(z)

· ∂
2vi(z)

∂ zs∂ zt
. (B.18)
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By construction, the second-order cross derivatives of T and T̃ are all zero. Therefore, we
have

0 = A
n

∑
i=1

∂ 2 T̃(v(z))
∂vi(z)2 · ∂vi(z)

∂ zt
· ∂vi(z)

∂ zs
+A

n

∑
i=1

∂ T̃(v(z))
∂vi(z)

· ∂
2vi(z)

∂ zs∂ zt
. (B.19)

Equation (B.19) can be written in the following matrix-vector form:

0 = A T̃′′(z)v′s,t(z)+A T̃′(z)v′′s,t(z), (B.20)

where

T̃′′(z) :=
[

∂ 2 T̃(v(z))
∂v1(z)2 , · · · , ∂ 2 T̃(v(z))

∂vn(z)2

]
∈ Rk×n (B.21)

v′s,t(z) :=
[

∂v1(z)
∂ zt

· ∂v1(z)
∂ zs

, · · · , ∂vn(z)
∂ zt

· ∂vn(z)
∂ zs

]T

∈ Rn, (B.22)

and

T̃′(z) :=
[

∂ T̃(v(z))
∂v1(z)

, · · · , ∂ T̃(v(z))
∂vn(z)

]
∈ Rk×n (B.23)

v′′s,t(z) :=
[

∂ 2v1(z)
∂ zs∂ zt

, · · · , ∂ 2vn(z)
∂ zs∂ zt

]T

∈ Rn . (B.24)

Now, by concatenating

T̃′′′(z) := [T̃′′(z), T̃′(z)] ∈ Rk×2n (B.25)

v′′′s,t(z) := [v′s,t(z)
T ,v′′s,t(z)

T ]T ∈ R2n, (B.26)

we further obtain

0 = A T̃′′′(z)v′′′s,t(z). (B.27)

Finally, we take the rows of T̃′′′(z) that corresponds to the factorized strongly exponential
family distribution part and denote them by T̃′′′f (z) ∈ Rk′×2n. By Lemma 5 in Khemakhem
et al. (2020a) and the assumption that k′ ≥ 2n, we have that the rank of T̃′′′f (z) is 2n. Since
k ≥ k′ ≥ 2n, the rank of T̃′′′(z) is also 2n. Since the rank of A is k, the rank of A T̃′′′(z) ∈
Rk×2n is 2n. This implies that v′′′s,t(z) must be a zero vector. In particular, we have that
v′s,t(z) = 0, ∀s ̸= t. Therefore, we have shown that v is a pointwise function.
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Step II. To complete the proof, we need to show that A is a block permutation matrix.
Without loss of generality, we assume that the permutation in v is the identity. That is,
v(z) = [v1(z1), · · · ,vn(zn)]

T for some nonlinear univariate scalar functions v1, · · · ,vn. Since
f and f̃ are bijective, we have that v is also bijective and v−1(z) = [v−1

1 (z1), · · · ,v−1
n (zn)]

T .
We denote T̄(v(z)) = T̃(v(z))+A−1 c and plug it into Equation (B.16) to obtain T(z) =
A T̄(v(z)). Applying v−1 to the variables z at both sides gives

T(v−1(z)) = A T̄(z). (B.28)

Let t be the index of an entry in the sufficient statistics T that corresponds to the the factorized
strongly exponential family distribution part T f . For all s ̸= t, we have

0 =
∂ T(v−1(z))t

∂ zs
=

k

∑
j=1

at j
∂ T̄(z) j

∂ zs
. (B.29)

Since the entries of T̃ are linearly independent (if they were not linearly independent, then T̃
can be compressed into a smaller vector by removing the redundant entries), we have that at j

is zero for any j such that ∂ T̄(z) j
∂ zs
̸= 0. This includes the entries j in the sufficient statistics T̃

that correspond to 1) the factorized strongly exponential family distribution part which does
not depend on zt ; and 2) the neural network part.

Therefore, when t is the index of an entry in the sufficient statistics T that corresponds to
factor i in the factorized strongly exponential family distribution part T f , the only non-zero
at j are the ones that map between T fi(zi) and T̄ fi(vi(zi)), where T fi are the factors in T f that
only depends on zi and T̄ fi is defined similarly. Therefore, we can construct an invertible
submatrix A′i with all non-zero elements at j for all t that corresponds to factor i, such that

T fi(zi) = A′i T̄ fi(vi(zi)) = A′i T̃ fi(vi(zi))+ ci, i = 1, · · · ,n, (B.30)

where T̃ fi are the factors in T̃ f that only depends on zi, and ci are the corresponding elements
of c. This means that the matrix A is a block permutation matrix. For each i = 1, · · · ,n, the
block A′i of A affinely transforms T fi(zi) into T̃ fi(vi(zi)). There is also an additional block
A′NN which affinely transforms TNN(z) into T̃NN(v(z)). This completes the proof.
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B.3 Proof of Theorem 6

Proof. This proof builds upon the proof of Theorem 4 in Khemakhem et al. (2020a).

If we maximize the joint training objective (3.12) with respect to φ , by Assumption (i) and
the properties of variation lower bound and score matching, we will eventually obtain

qφ (z |x,u) = pθ (z |x,u). (B.31)

Hence, the joint training objective will eventually be equivalent to the expected log marginal
likelihood up to a constant term. By Assumption (iii), since the identifiability is guaranteed
up to the equivalence class defined in Definition 3, the consistency of maximum likelihood
estimation means that we will converge to this equivalence class of the true paramteres θ

∗ in
the limit of infinite data if we maximize the objective with respect to θ . Hence, the true data
representation z∗ can be recovered up to simple transformations defined in Equation (3.6) in
the limit of infinite data. This completes the proof.
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